UNIVERSAL INEQUALITIES FOR EIGENVALUES OF THE VIBRATION PROBLEM FOR A CLAMPED PLATE ON RIEMANNIAN MANIFOLDS

被引:6
作者
Xia, Changyu [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
PAYNE-POLYA-WEINBERGER; DIFFERENTIAL-OPERATORS; BIHARMONIC OPERATOR; COMMUTATOR BOUNDS; LAPLACIAN; CONJECTURE; PROOF; GAPS;
D O I
10.1093/qmath/hap026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Eigenvalues of the vibration problem for a clamped plate on compact Riemannian manifolds with boundary (possibly empty) are studied. Universal bounds on eigenvalues of the vibration problem for a clamped plate on compact domains in a complex projective space, a minimal submanifold of a Euclidean space or of a unit sphere are obtained and in particular, an explicit upper bound for the (k + 1)th eigenvalue of the vibration problem for a clamped plate on such objects in terms of its first k eigenvalues will be given.
引用
收藏
页码:235 / 258
页数:24
相关论文
共 28 条
[1]  
[Anonymous], LONDON MATH SOC LECT
[2]  
[Anonymous], 1990, J U SCI TECHNOL CHIN
[3]   PROOF OF THE PAYNE-POLYA-WEINBERGER CONJECTURE [J].
ASHBAUGH, MS ;
BENGURIA, RD .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 25 (01) :19-29
[4]   The universal eigenvalue bounds of Payne-Polya-Weinberger, Hile-Protter, and H C Yang [J].
Ashbaugh, MS .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2002, 112 (01) :3-30
[5]   A SHARP BOUND FOR THE RATIO OF THE 1ST 2 EIGENVALUES OF DIRICHLET LAPLACIANS AND EXTENSIONS [J].
ASHBAUGH, MS ;
BENGURIA, RD .
ANNALS OF MATHEMATICS, 1992, 135 (03) :601-628
[6]   A 2ND PROOF OF THE PAYNE-POLYA-WEINBERGER CONJECTURE [J].
ASHBAUGH, MS ;
BENGURIA, RD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :181-190
[7]   Inequalities for eigenvalues of Laplacian on domains and compact complex hypersurfaces in complex projective spaces [J].
Cheng, Qing-Ming ;
Yang, Hongcang .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (02) :545-561
[8]   Inequalities for eigenvalues of a clamped plate problem [J].
Cheng, QM ;
Yang, HC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (06) :2625-2635
[9]   Estimates on eigenvalues of Laplacian [J].
Cheng, QM ;
Yang, HC .
MATHEMATISCHE ANNALEN, 2005, 331 (02) :445-460
[10]   MAXIMUM-PRINCIPLES AND NONEXISTENCE RESULTS FOR MINIMAL SUBMANIFOLDS [J].
DIERKES, U .
MANUSCRIPTA MATHEMATICA, 1990, 69 (02) :203-218