Emptiness formation probability for the anisotropic XY spin chain in a magnetic field

被引:29
作者
Abanov, AG [1 ]
Franchini, F [1 ]
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
关键词
emptiness formation probability; integrable models; XY spin chain; Toeplitz determinants; Fisher-Hartwig conjecture;
D O I
10.1016/j.physleta.2003.07.009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study an asymptotic behavior of the probability of formation of a ferromagnetic string (referred to as EFP) of length n in the ground state of the one-dimensional anisotropic XY model in a transversal magnetic field as n --> infinity. We find that it is exponential everywhere in the phase diagram of the XY model except at the critical lines where the spectrum is gapless. One of those lines corresponds to the isotropic XY model where EFP decays in a Gaussian way, as was shown in [J. Phys. Soc. Jpn. 70 (2001) 3535]. The other lines are at the critical value of the magnetic field. There, we show that EFP is still exponential but acquires a non-trivial power-law prefactor with a universal exponent. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:342 / 349
页数:8
相关论文
共 25 条
[1]  
Abanov A., UNPUB
[2]   On the probability of ferromagnetic strings in antiferromagnetic spin chains [J].
Abanov, AG ;
Korepin, VE .
NUCLEAR PHYSICS B, 2002, 647 (03) :565-580
[3]   STATISTICAL MECHANICS OF XY-MODEL .2. SPIN-CORRELATION FUNCTIONS [J].
BAROUCH, E ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 3 (02) :786-+
[4]   THE FISHER-HARTWIG CONJECTURE AND TOEPLITZ EIGENVALUES [J].
BASOR, EL ;
MORRISON, KE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 202 :129-142
[5]   THE FISHER-HARTWIG CONJECTURE AND GENERALIZATIONS [J].
BASOR, EL ;
TRACY, CA .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1991, 177 (1-3) :167-173
[6]  
des Cloizeaux J., 1973, Journal of Mathematical Physics, V14, P1648, DOI 10.1063/1.1666239
[7]   FREDHOLM DETERMINANTS AND INVERSE SCATTERING PROBLEMS [J].
DYSON, FJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 47 (02) :171-183
[8]  
Ehrhardt T, 2000, OPER THEOR, V124, P217
[9]   Toeplitz determinants with one Fisher-Hartwig singularity [J].
Ehrhardt, T ;
Silbermann, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 148 (01) :229-256
[10]  
Fisher M. E., 1968, ADV CHEM PHYS, V15, P333, DOI DOI 10.1002/9780470143605.CH18