Boosted decision trees as an alternative to artificial neural networks for particle identification

被引:395
作者
Roe, BP
Yang, HJ [1 ]
Zhu, J
Liu, Y
Stancu, I
McGregor, G
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[3] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA
[4] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
boosted decision trees; artificial neural network; particle identification; neutrino oscillations; MiniBooNE;
D O I
10.1016/j.nima.2004.12.018
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The efficacy of particle identification is compared using artificial neutral networks and boosted decision trees. The comparison is performed in the context of the MiniBooNE, an experiment at Fermilab searching for neutrino oscillations. Based on studies of Monte Carlo samples of simulated data, particle identification with boosting algorithms has better performance than that with artificial neural networks for the MiniBooNE experiment. Although the tests in this paper were for one experiment, it is expected that boosting algorithms will find wide application in physics. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:577 / 584
页数:8
相关论文
共 11 条
[1]  
Aguilar A, 2001, PHYS REV D, V64, DOI 10.1103/PhysRevD.64.112007
[2]  
Breiman L., 1998, CLASSIFICATION REGRE
[3]  
CHURCH E, 1997, FERMILABP0898
[4]  
Freund Y., 1999, Journal of Japanese Society for Artificial Intelligence, V14, P771
[5]  
Freund Y., 1996, P COLT, P209
[6]   Additive logistic regression: A statistical view of boosting - Rejoinder [J].
Friedman, J ;
Hastie, T ;
Tibshirani, R .
ANNALS OF STATISTICS, 2000, 28 (02) :400-407
[7]  
FRIEDMAN J, 2003, P PHYST STANF U SEPT
[8]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232
[9]  
ROE BP, 2004, UNPUB BOONETN11 0318
[10]  
SCHAPIRE R, 2002, LECT NOTES STAT