Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices

被引:71
作者
Akhavan, Vahid A. [1 ,2 ,3 ]
Panthani, Matthew G. [1 ,2 ,3 ]
Goodfellow, Brian W. [1 ,2 ,3 ]
Reid, Dariya K. [1 ]
Korgel, Brian A. [1 ,2 ,3 ]
机构
[1] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[3] Univ Texas Austin, Ctr Nano & Mol Sci & Technol, Austin, TX 78712 USA
来源
OPTICS EXPRESS | 2010年 / 18卷 / 19期
关键词
POLYMER SOLAR-CELLS; EFFICIENCY; ACHIEVEMENTS; CONVERSION;
D O I
10.1364/OE.18.00A411
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper reports our latest results using colloidal CuInSe2 nanocrystal inks to prepare photovoltaic (PV) devices. Thus far, devices with nanocrystal layers processed under ambient conditions with no post-deposition treatment have achieved power conversion efficiencies of up to 3.1%. Device efficiency is largely limited by charge carrier trapping in the nanocrystal layer, and the highest device efficiencies are obtained with very thin layers-less than 150 nm-absorbing only a fraction of the incident light. Devices with thicker nanocrystal layers had lower power conversion efficiency, despite the increased photon absorption, because the internal quantum efficiency of the devices decreased significantly. The thin, most efficient devices exhibited internal quantum efficiencies as high as 40%, across a wide spectrum. Mott-Schottky measurements revealed that the active region thickness in the devices is approximately 50 nm. (C) 2010 Optical Society of America
引用
收藏
页码:A411 / A420
页数:10
相关论文
共 26 条
[11]   BAND-BAND IMPACT IONIZATION AND SOLAR-CELL EFFICIENCY [J].
LANDSBERG, PT ;
NUSSBAUMER, H ;
WILLEKE, G .
JOURNAL OF APPLIED PHYSICS, 1993, 74 (02) :1451-1452
[12]   For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% [J].
Liang, Yongye ;
Xu, Zheng ;
Xia, Jiangbin ;
Tsai, Szu-Ting ;
Wu, Yue ;
Li, Gang ;
Ray, Claire ;
Yu, Luping .
ADVANCED MATERIALS, 2010, 22 (20) :E135-+
[13]   Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels [J].
Luque, A ;
Marti, A .
PHYSICAL REVIEW LETTERS, 1997, 78 (26) :5014-5017
[14]   Schottky Solar Cells Based on Colloidal Nanocrystal Films [J].
Luther, Joseph M. ;
Law, Matt ;
Beard, Matthew C. ;
Song, Qing ;
Reese, Matthew O. ;
Ellingson, Randy J. ;
Nozik, Arthur J. .
NANO LETTERS, 2008, 8 (10) :3488-3492
[15]   Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals [J].
Ma, Wanli ;
Luther, Joseph M. ;
Zheng, Haimei ;
Wu, Yue ;
Alivisatos, A. Paul .
NANO LETTERS, 2009, 9 (04) :1699-1703
[16]  
McCandless B. E., 2003, United State Patent, Patent, Patent No. [6,537,845 B1, 6537845]
[17]   ON THE CDS/CUINSE2 CONDUCTION-BAND DISCONTINUITY [J].
NIEMEGEERS, A ;
BURGELMAN, M ;
DEVOS, A .
APPLIED PHYSICS LETTERS, 1995, 67 (06) :843-845
[18]   Quantum dot solar cells [J].
Nozik, AJ .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (1-2) :115-120
[19]   Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal "Inks" for Printable Photovoltaics [J].
Panthani, Matthew G. ;
Akhavan, Vahid ;
Goodfellow, Brian ;
Schmidtke, Johanna P. ;
Dunn, Lawrence ;
Dodabalapur, Ananth ;
Barbara, Paul F. ;
Korgel, Brian A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (49) :16770-16777
[20]   Depleted-Heterojunction Colloidal Quantum Dot Solar Cells [J].
Pattantyus-Abraham, Andras G. ;
Kramer, Illan J. ;
Barkhouse, Aaron R. ;
Wang, Xihua ;
Konstantatos, Gerasimos ;
Debnath, Ratan ;
Levina, Larissa ;
Raabe, Ines ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael ;
Sargent, Edward H. .
ACS NANO, 2010, 4 (06) :3374-3380