Singular Hopf bifurcation in systems with fast and slow variables

被引:51
作者
Braaksma, B [1 ]
机构
[1] Limburgs Univ Ctr, B-3590 Diepenbeek, Belgium
关键词
D O I
10.1007/s003329900058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a general nonlinear ODE system with fast and slow variables, i.e., some of the derivatives are multiplied by a small parameter. The system depends on an additional bifurcation parameter. We derive a normal form for this system, valid close to equilibria where certain conditions on the derivatives hold. The most important condition concerns the presence of eigenvalues with singular imaginary parts, by which we mean that their imaginary part grows without bound as the small parameter tends to zero. We give a simple criterion to test for the possible presence of equilibria satisfying this condition. Using a center manifold reduction, we show the existence of Hopf bifurcation points, originating from the interaction of fast and slow variables, and we determine their nature. We apply the theory, developed here, to two examples: an extended Bonhoeffer-van der Pol system and a predator-prey model. Our theory is in good agreement with the numerical continuation experiments we carried out for the examples.
引用
收藏
页码:457 / 490
页数:34
相关论文
共 27 条
[1]  
ARNOLD VI, 1994, ENCYCL MATH SCI, V5, P1
[2]   SINGULAR HOPF-BIFURCATION TO RELAXATION OSCILLATIONS [J].
BAER, SM ;
ERNEUX, T .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1986, 46 (05) :721-739
[3]   TOPOLOGICAL AND PHENOMENOLOGICAL CLASSIFICATION OF BURSTING OSCILLATIONS [J].
BERTRAM, R ;
BUTTE, MJ ;
KIEMEL, T ;
SHERMAN, A .
BULLETIN OF MATHEMATICAL BIOLOGY, 1995, 57 (03) :413-439
[4]  
Braaksma B., 1993, THESIS U UTRECHT
[5]  
BUCKENHEIMER J, 1983, NONLINEAR OSCILLATIO
[6]  
CALLOT JL, 1978, CR ACAD SCI PARIS A, V286, P1054
[7]   MATHEMATICAL-MODEL OF PERIODIC PROCESSES IN MEMBRANES (WITH APPLICATION TO CELL-CYCLE REGULATION) [J].
CHERNAVSKII, DS ;
PALAMARCHUK, EK ;
POLEZHAEV, AA ;
SOLYANIK, GI ;
BURLAKOVA, EB .
BIOSYSTEMS, 1977, 9 (04) :187-193
[8]  
CUGNO F, 1983, RICHERCHE EC, V37, P3
[9]   THE CANARD UNCHAINED OR HOW FAST SLOW DYNAMICAL-SYSTEMS BIFURCATE [J].
DIENER, M .
MATHEMATICAL INTELLIGENCER, 1984, 6 (03) :38-49
[10]  
Dumortier F, 1996, MEM AM MATH SOC, V121, P1