Engineering neoantigen vaccines to improve cancer personalized immunotherapy

被引:23
作者
Liu, Zaoqu [1 ,2 ,3 ]
Lv, Jinxiang [4 ]
Dang, Qin [5 ]
Liu, Long [6 ]
Weng, Siyuan [1 ]
Wang, Libo [6 ]
Zhou, Zhaokai [7 ]
Kong, Ying [1 ]
Li, Huanyun [1 ]
Han, Yilin [1 ]
Han, Xinwei [1 ,2 ,3 ]
机构
[1] Zhengzhou Univ, Dept Intervent Radiol, Affiliated Hosp 1, Zhengzhou 450052, Henan, Peoples R China
[2] Zhengzhou Univ, Intervent Inst, Zhengzhou 450052, Henan, Peoples R China
[3] Intervent Treatment & Clin Res Ctr Henan Prov, Zhengzhou 450052, Henan, Peoples R China
[4] Zhengzhou Univ, Dept Gastroenterol, Affiliated Hosp 1, Zhengzhou 450052, Henan, Peoples R China
[5] Zhengzhou Univ, Dept Colorectal Surg, Affiliated Hosp 1, Zhengzhou 450052, Henan, Peoples R China
[6] Zhengzhou Univ, Dept Hepatobiliary & Pancreat Surg, Affiliated Hosp 1, Zhengzhou 450052, Henan, Peoples R China
[7] Zhengzhou Univ, Dept Pediat Urol, Affiliated Hosp 1, Zhengzhou, Henan, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES | 2022年 / 18卷 / 15期
关键词
Neoantigen; Cancer; Vaccine; Immunotherapy; Personalized therapy; CELL LUNG-CANCER; IMMUNE-RESPONSES; T-CELLS; DNA VACCINE; MELANOMA; SURVEILLANCE; COMBINATION; RESISTANCE; METASTASES; ACTIVATE;
D O I
10.7150/ijbs.76281
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Immunotherapy treatments harnessing the immune system herald a new era of personalized medicine, offering considerable benefits for cancer patients. Over the past years, tumor neoantigens emerged as a rising star in immunotherapy. Neoantigens are tumor-specific antigens arising from somatic mutations, which are proceeded and presented by the major histocompatibility complex on the cell surface. With the advancement of sequencing technology and bioinformatics engineering, the recognition of neoantigens has accelerated and is expected to be incorporated into the clinical routine. Currently, tumor vaccines against neoantigens mainly encompass peptides, DNA, RNA, and dendritic cells, which are extremely specific to individual patients. Due to the high immunogenicity of neoantigens, tumor vaccines could activate and expand antigen-specific CD4+ and CD8+ T cells to intensify anti-tumor immunity. Herein, we introduce the origin and prediction of neoantigens and compare the advantages and disadvantages of multiple types of neoantigen vaccines. Besides, we review the immunizations and the current clinical research status in neoantigen vaccines, and outline strategies for enhancing the efficacy of neoantigen vaccines. Finally, we present the challenges facing the application of neoantigens.
引用
收藏
页码:5607 / 5623
页数:17
相关论文
共 180 条
  • [1] CD4+ T cell help creates memory CD8+ T cells with innate and help-independent recall capacities
    Ahrends, Tomasz
    Busselaar, Julia
    Severson, Tesa M.
    Babala, Nikolina
    de Vries, Evert
    Bovens, Astrid
    Wessels, Lodewyk
    van Leeuwen, Fred
    Borst, Jannie
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [2] CD4+ T Cell Help Confers a Cytotoxic T Cell Effector Program Including Coinhibitory Receptor Downregulation and Increased Tissue Invasiveness
    Ahrends, Tomasz
    Spanjaard, Aldo
    Pilzecker, Bas
    Babala, Nikolina
    Bovens, Astrid
    Xiao, Yanling
    Jacobs, Heinz
    Borst, Jannie
    [J]. IMMUNITY, 2017, 47 (05) : 848 - +
  • [3] Signatures of mutational processes in human cancer
    Alexandrov, Ludmil B.
    Nik-Zainal, Serena
    Wedge, David C.
    Aparicio, Samuel A. J. R.
    Behjati, Sam
    Biankin, Andrew V.
    Bignell, Graham R.
    Bolli, Niccolo
    Borg, Ake
    Borresen-Dale, Anne-Lise
    Boyault, Sandrine
    Burkhardt, Birgit
    Butler, Adam P.
    Caldas, Carlos
    Davies, Helen R.
    Desmedt, Christine
    Eils, Roland
    Eyfjord, Jorunn Erla
    Foekens, John A.
    Greaves, Mel
    Hosoda, Fumie
    Hutter, Barbara
    Ilicic, Tomislav
    Imbeaud, Sandrine
    Imielinsk, Marcin
    Jaeger, Natalie
    Jones, David T. W.
    Jones, David
    Knappskog, Stian
    Kool, Marcel
    Lakhani, Sunil R.
    Lopez-Otin, Carlos
    Martin, Sancha
    Munshi, Nikhil C.
    Nakamura, Hiromi
    Northcott, Paul A.
    Pajic, Marina
    Papaemmanuil, Elli
    Paradiso, Angelo
    Pearson, John V.
    Puente, Xose S.
    Raine, Keiran
    Ramakrishna, Manasa
    Richardson, Andrea L.
    Richter, Julia
    Rosenstiel, Philip
    Schlesner, Matthias
    Schumacher, Ton N.
    Span, Paul N.
    Teague, Jon W.
    [J]. NATURE, 2013, 500 (7463) : 415 - +
  • [4] Mechanisms of Immune Escape and Resistance to Checkpoint Inhibitor Therapies in Mismatch Repair Deficient Metastatic Colorectal Cancers
    Amodio, Vito
    Mauri, Gianluca
    Reilly, Nicole M.
    Sartore-Bianchi, Andrea
    Siena, Salvatore
    Bardelli, Alberto
    Germano, Giovanni
    [J]. CANCERS, 2021, 13 (11)
  • [5] IFN-γ and CD38 in Hyperprogressive Cancer Development
    Angelicola, Stefania
    Ruzzi, Francesca
    Landuzzi, Lorena
    Scalambra, Laura
    Gelsomino, Francesco
    Ardizzoni, Andrea
    Nanni, Patrizia
    Lollini, Pier-Luigi
    Palladini, Arianna
    [J]. CANCERS, 2021, 13 (02) : 1 - 25
  • [6] Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages
    Arlauckas, Sean P.
    Garren, Seth B.
    Garris, Chris S.
    Kohler, Rainer H.
    Oh, Juhyun
    Pittet, Mikael J.
    Weissleder, Ralph
    [J]. THERANOSTICS, 2018, 8 (21): : 5842 - 5854
  • [7] Immune Surveillance by Natural IgM Is Required for Early Neoantigen Recognition and Initiation of Adaptive Immunity
    Atif, Shaikh M.
    Gibbings, Sophie L.
    Redente, Elizabeth F.
    Camp, Faye A.
    Torres, Raul M.
    Kedl, Ross M.
    Henson, Peter M.
    Jakubzick, Claudia, V
    [J]. AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2018, 59 (05) : 580 - 591
  • [8] Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance
    Bagchi, Sreya
    Yuan, Robert
    Engleman, Edgar G.
    [J]. ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 16, 2021, 2021, 16 : 223 - 249
  • [9] Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells
    Baharom, Faezzah
    Ramirez-Valdez, Ramiro A.
    Tobin, Kennedy K. S.
    Yamane, Hidehiro
    Dutertre, Charles-Antoine
    Khalilnezhad, Ahad
    Reynoso, Glennys, V
    Coble, Vincent L.
    Lynn, Geoffrey M.
    Mule, Matthew P.
    Martins, Andrew J.
    Finnigan, John P.
    Zhang, Xiao Meng
    Hamerman, Jessica A.
    Bhardwaj, Nina
    Tsang, John S.
    Hickman, Heather D.
    Ginhoux, Florent
    Ishizuka, Andrew S.
    Seder, Robert A.
    [J]. NATURE IMMUNOLOGY, 2021, 22 (01) : 41 - 52
  • [10] Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer
    Balachandran, Vinod P.
    Luksza, Marta
    Zhao, Julia N.
    Makarov, Vladimir
    Moral, John Alec
    Remark, Romain
    Herbst, Brian
    Askan, Gokce
    Bhanot, Umesh
    Senbabaoglu, Yasin
    Wells, Daniel K.
    Cary, Charles Ian Ormsby
    Grbovic-Huezo, Olivera
    Attiyeh, Marc
    Medina, Benjamin
    Zhang, Jennifer
    Loo, Jennifer
    Saglimbeni, Joseph
    Abu-Akeel, Mohsen
    Zappasodi, Roberta
    Riaz, Nadeem
    Smoragiewicz, Martin
    Kelley, Z. Larkin
    Basturk, Olca
    Goenen, Mithat
    Levine, Arnold J.
    Allen, Peter J.
    Fearon, Douglas T.
    Merad, Miriam
    Gnjatic, Sacha
    Iacobuzio-Donahue, Christine A.
    Wolchok, Jedd D.
    DeMatteo, Ronald P.
    Chan, Timothy A.
    Greenbaum, Benjamin D.
    Merghoub, Taha
    Leach, Steven D.
    [J]. NATURE, 2017, 551 (7681) : 512 - +