Permeation of supercritical CO2 through dense polymeric membranes

被引:16
作者
Shamu, Andrew [1 ,2 ]
Dunnewold, Marije [1 ,3 ]
Miedema, Henk [1 ]
Borneman, Zandrie [2 ,4 ]
Nijmeijer, Kitty [2 ,4 ]
机构
[1] Wetsus, Ctr Excellence Sustainable Water Technol, Oostergoweg 9, NL-8911 MA Leeuwarden, Netherlands
[2] Eindhoven Univ Technol, Membrane Mat & Proc, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Univ Twente P Box, Membrane Sci & Technol, POB 217, NL-7500 AE Enschede, Netherlands
[4] Dutch Inst Fundamental Energy Res DIFFER, POB 6336, NL-5600 HH Eindhoven, Netherlands
关键词
Supercritical carbon dioxide; Dense membranes; Polydimethylsiloxane (PDMS); Sorption; Permeability; Widom line; CARBON-DIOXIDE; EXTRACTION; PERMEABILITY; SEPARATION; DIFFUSION; FLUIDS;
D O I
10.1016/j.supflu.2018.10.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Supercritical carbon dioxide (scCO(2)) is used in the food industry as a water-extracting drying agent. Once saturated with water, the scCO(2) needs to be regenerated. A promising way of drying scCO(2) is by using H2O permeable membranes. Ideally, these membranes demonstrate low CO2 permeability. Here, we investigated the CO2 permeability of three types of dense membranes, Nafion, Natural Rubber and PDMS, of which the latter in more detail because of its ease of handling. The experimental conditions, temperature and pressure, resulting in minimum CO2 permeability ( = losses) were explored. Even though the absolute CO2 permeability depends on the intrinsic membrane material properties, its trend with increasing feed pressure is defined by the (super-critical) behavior of CO2, notably its density as a function of temperature and pressure. The data points to transitions within the supercritical regime, from the gaseous-like supercritical state to the liquid-like supercritical state, graphically visualized by the Widom line for CO2 density. Sorption measurements with PDMS membranes confirm this behavior that follows the diffusion-solution theory. In the gaseous state, the (normalized) permeability follows the (normalized) solubility, indicating a constant CO2 diffusivity. With increasing pressure and when entering the liquid-like (supercritical) regime, the diffusivity drops, resulting in a (normalized) permeability that starts to lag behind the (normalized) solubility.
引用
收藏
页码:63 / 70
页数:8
相关论文
共 50 条
  • [31] Facilitated transport of CO2 through synthetic polymeric membranes
    Zhang, Y
    Wang, Z
    Wang, SC
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2002, 10 (05) : 570 - 574
  • [32] Characteristics of Gas Permeation Behaviour in Multilayer Thin Film Composite Membranes for CO2 Separation
    Lillepaerg, Jelena
    Breitenkamp, Sabrina
    Shishatskiy, Sergey
    Pohlmann, Jan
    Wind, Jan
    Scholles, Carsten
    Brinkmann, Torsten
    MEMBRANES, 2019, 9 (02)
  • [33] Facilitated Transport of CO2 Through Synthetic Polymeric Membranes
    张颖
    王志
    王世昌
    Chinese Journal of Chemical Engineering, 2002, (05) : 80 - 84
  • [34] Adsorption equilibrium of benzaldehyde and benzyl alcohol onto polymeric resin from supercritical CO2
    Yang, Xiaoning
    Lira, Carl T.
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2017, 23 (01): : 63 - 71
  • [35] Gas permeation prediction through polymeric membranes using compressible regular solution theory
    Rezakazemi, Mashallah
    Shirazian, Saeed
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (49) : 22357 - 22364
  • [36] Prediction of plasticization pressure of polymeric membranes for CO2 removal from natural gas
    Ahmad, A. L.
    Adewole, J. K.
    Leo, C. P.
    Ismail, S.
    Sultan, A. S.
    Olatunji, S. O.
    JOURNAL OF MEMBRANE SCIENCE, 2015, 480 : 39 - 46
  • [37] Kinetics modeling of adsorption and desorption of benzaldehyde and benzyl alcohol on polymeric resin in supercritical CO2
    Yang, Xiaoning
    Li, Yaping
    Lira, Carl T.
    JOURNAL OF CO2 UTILIZATION, 2017, 21 : 253 - 260
  • [38] Selective permeation of CO2 through new facilitated transport membranes
    Zhang, Y
    Wang, Z
    Wang, SC
    DESALINATION, 2002, 145 (1-3) : 385 - 388
  • [39] Improving CO2/N2 separation performance using nonionic surfactant Tween containing polymeric gel membranes
    Dong, Liang-liang
    Zhang, Chun-fang
    Zhang, Yao-yao
    Bai, Yun-xiang
    Gu, Jin
    Sun, Yu-ping
    Chen, Ming-qing
    RSC ADVANCES, 2015, 5 (07) : 4947 - 4957
  • [40] Interactions of Supercritical CO2 with Coal
    Zhang, Dengfeng
    Gu, Lili
    Li, Songgeng
    Lian, Peichao
    Tao, Jun
    ENERGY & FUELS, 2013, 27 (01) : 387 - 393