Engineering of Recombinant Spider Silk Proteins Allows Defined Uptake and Release of Substances

被引:42
|
作者
Doblhofer, Elena [1 ]
Scheibel, Thomas [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Bayreuth, Fak Ingn Wissensch, Lehrstuhl Biomat, D-95440 Bayreuth, Germany
[2] Univ Bayreuth, BZKG, D-95440 Bayreuth, Germany
[3] Univ Bayreuth, Inst Biomakromol Biomac, D-95440 Bayreuth, Germany
[4] Univ Bayreuth, BZMB, D-95440 Bayreuth, Germany
[5] Univ Bayreuth, Bayreuther Mat Zentrum BayMAT, D-95440 Bayreuth, Germany
关键词
biodegradable polymers; biomaterials; biotechnology; DNA; oligonucleotide delivery; drug delivery system; DRUG-DELIVERY SYSTEMS; GENE DELIVERY; CYTOTOXICITY; PARTICLES; COMPLEXES;
D O I
10.1002/jps.24300
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Drug delivery carriers stabilize drugs and control their release, expanding the therapeutic window, and avoiding side effects of otherwise freely diffusing drugs in the human body. Materials used as carrier vehicles have to be biocompatible, biodegradable, nontoxic, and nonimmunogenic. Previously, particles made of the recombinant spider silk protein eADF4(C16) could be effectively loaded with positively and neutrally charged model substances. Here, a new positively charged variant thereof, named eADF4(16), has been engineered. Its particle formation is indistinguishable to that of polyanionic eADF4(C16), but in contrast polycationic eADF4(16) allows incorporation of negatively charged substances. Both high-molecular-weight substances, such as nucleic acids, and low-molecular-weight substances could be efficiently loaded onto eADF4(16) particles, and release of nucleic acids was shown to be well controlled. (c) 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:988-994, 2015
引用
收藏
页码:988 / 994
页数:7
相关论文
共 50 条
  • [1] Recombinant Production of Spider Silk Proteins
    Heidebrecht, Aniela
    Scheibel, Thomas
    ADVANCES IN APPLIED MICROBIOLOGY, VOL 82, 2013, 82 : 115 - 153
  • [2] Recombinant Spider Silk Proteins for Applications in Biomaterials
    Spiess, Kristina
    Lammel, Andreas
    Scheibel, Thomas
    MACROMOLECULAR BIOSCIENCE, 2010, 10 (09) : 998 - 1007
  • [3] Aqueous electrospinning of recombinant spider silk proteins
    DeSimone, Elise
    Aigner, Tamara B.
    Humenik, Martin
    Lang, Gregor
    Scheibel, Thomas
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 106
  • [4] Recombinant DNA production of spider silk proteins
    Tokareva, Olena
    Michalczechen-Lacerda, Valquiria A.
    Rech, Elibio L.
    Kaplan, David L.
    MICROBIAL BIOTECHNOLOGY, 2013, 6 (06): : 651 - 663
  • [5] Assembly mechanism of recombinant spider silk proteins
    Rammensee, S.
    Slotta, U.
    Scheibel, T.
    Bausch, A. R.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (18) : 6590 - 6595
  • [6] Recombinant Spider Silk Hydrogels for Sustained Release of Biologicals
    Kumari, Sushma
    Bargel, Hendrik
    Anby, Mette U.
    Lafargue, David
    Scheibel, Thomas
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2018, 4 (05): : 1750 - 1759
  • [7] Designing recombinant spider silk proteins to control assembly
    Winkler, S
    Szela, S
    Avtges, P
    Valluzzi, R
    Kirschner, DA
    Kaplan, D
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 1999, 24 (2-3) : 265 - 270
  • [8] Recent advances in production of recombinant spider silk proteins
    Chung, Hannah
    Kim, Tae Yong
    Lee, Sang Yup
    CURRENT OPINION IN BIOTECHNOLOGY, 2012, 23 (06) : 957 - 964
  • [9] Suitable electrospinning approaches for recombinant spider silk proteins
    Sommer, Christoph
    Scheibel, Thomas
    OPEN CERAMICS, 2023, 15
  • [10] Acid extraction and purification of recombinant spider silk proteins
    Mello, CM
    Soares, JW
    Arcidiacono, S
    Butlers, MM
    BIOMACROMOLECULES, 2004, 5 (05) : 1849 - 1852