DYNAMICAL ZETA FUNCTIONS FOR ANOSOV FLOWS VIA MICROLOCAL ANALYSIS

被引:0
作者
Dyatlov, Semyon [1 ]
Zworski, Maciej [2 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2016年 / 49卷 / 03期
基金
美国国家科学基金会;
关键词
POLLICOTT-RUELLE RESONANCES; FREDHOLM DETERMINANTS; HYPERBOLIC MANIFOLDS; RIEMANN SURFACES; SOBOLEV SPACES; SYSTEMS; OPERATORS; DIFFEOMORPHISMS; SPECTRUM; NUMBER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to give a short microlocal proof of the meromorphic continuation of the Ruelle zeta function for C-infinity Anosov flows. More general results have been recently proved by Giulietti-Liverani-Pollicott [13] but our approach is different and is based on the study of the generator of the flow as a semiclassical differential operator.
引用
收藏
页码:543 / 577
页数:35
相关论文
共 39 条
[1]  
[Anonymous], ARXIV13114932
[2]  
[Anonymous], 2012, GRADUATE STUDIES MAT
[3]  
Baladi V, 2005, CONTEMP MATH, V385, P123
[4]   Anisotropic Holder and Sobolev spaces for hyperbolic diffeomorphisms [J].
Baladi, Viviane ;
Tsujii, Masato .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (01) :127-154
[5]   Sharp polynomial bounds on the number of Pollicott-Ruelle resonances [J].
Datchev, Kiril ;
Dyatlov, Semyon ;
Zworski, Maciej .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 :1168-1183
[6]   Fractal Weyl laws for asymptotically hyperbolic manifolds [J].
Datchev, Kiril ;
Dyatlov, Semyon .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (04) :1145-1206
[7]   CARLEMAN ESTIMATES FOR PSEUDODIFFERENTIAL OPERATORS [J].
DUISTERMAAT, JJ .
INVENTIONES MATHEMATICAE, 1972, 17 (01) :31-+
[8]   POWER SPECTRUM OF THE GEODESIC FLOW ON HYPERBOLIC MANIFOLDS [J].
Dyatlov, Semyon ;
Faure, Frederic ;
Guillarmou, Colin .
ANALYSIS & PDE, 2015, 8 (04) :923-1000
[9]   Stochastic stability of Pollicott-Ruelle resonances [J].
Dyatlov, Semyon ;
Zworski, Maciej .
NONLINEARITY, 2015, 28 (10) :3511-3533
[10]   Band structure of the Ruelle spectrum of contact Anosov flows [J].
Faure, Frederic ;
Tsujii, Masato .
COMPTES RENDUS MATHEMATIQUE, 2013, 351 (9-10) :385-391