Total coloring of embedded graphs of maximum degree at least ten

被引:3
作者
Hou JianFeng [1 ,2 ]
Wu JianLiang [1 ]
Liu GuiZhen [1 ]
Liu Bin [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Peoples R China
基金
中国国家自然科学基金;
关键词
surface; Euler characteristic; total coloring; total chromatic number; TOTAL CHROMATIC NUMBER; LIST-TOTAL COLORINGS; PLANAR GRAPHS; SURFACES; EDGE;
D O I
10.1007/s11425-010-3089-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A total k-coloring of a graph G is a coloring of V (G) boolean OR E(G) using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number chi ''(G) is the smallest integer k such that G has a total k-coloring. In this paper, it is proved that the total chromatic number of any graph G embedded in a surface Sigma of Euler characteristic chi(Sigma) >= 0 is Delta(G) + 1 if Delta >= 10, where Delta(G) denotes the maximum degree of G.
引用
收藏
页码:2127 / 2133
页数:7
相关论文
共 21 条
[1]  
[Anonymous], 1968, USPEKHIMAT NAUK
[2]  
Behzad M., 1965, Doctoral Thesis
[3]  
Borodin OV, 1997, J GRAPH THEOR, V26, P53, DOI 10.1002/(SICI)1097-0118(199709)26:1<53::AID-JGT6>3.0.CO
[4]  
2-G
[5]   Total colourings of planar graphs with large girth [J].
Borodin, OV ;
Kostochka, AV ;
Woodall, DR .
EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (01) :19-24
[6]  
BORODIN OV, 1989, J REINE ANGEW MATH, V394, P180
[7]   Total colorings of planar graphs without small cycles [J].
Hou, Jianfeng ;
Zhu, Yan ;
Liu, Guizhen ;
Wu, Jianliang ;
Lan, Mei .
GRAPHS AND COMBINATORICS, 2008, 24 (02) :91-100
[8]   List edge and list total colorings of planar graphs without 4-cycles [J].
Hou, Jianfeng ;
Liu, Guizhen ;
Cai, Jiansheng .
THEORETICAL COMPUTER SCIENCE, 2006, 369 (1-3) :250-255
[9]  
Kostochka A. V., 1978, Ph.D. Thesis
[10]   TOTAL COLORING OF A MULTI-GRAPH WITH MAXIMAL DEGREE-4 [J].
KOSTOCHKA, AV .
DISCRETE MATHEMATICS, 1977, 17 (02) :161-163