Moderate deviations for random sums of heavy-tailed random variables

被引:10
作者
Gao, Fu Qing [1 ]
机构
[1] Wuhan Univ, Sch Math, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
large deviations; moderate deviations; extended regular variation; Poisson process;
D O I
10.1007/s10114-007-0941-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {X-n; n >= 1} be a sequence of independent non-negative random variables with common distribution function F having extended regularly varying tail and finite mean mu = E(X-1) and let {N(t); t = 0} be a random process taking non-negative integer values with finite mean lambda(t) = E( N(t)) and independent of {Xn; n = 1}. In this paper, asymptotic expressions of P((X-1+center dot center dot center dot+ X-N(T))-lambda(t)mu > x) uniformly for x epsilon [gamma b(t),infinity) are obtained, where gamma > 0 and b(t) can be taken to be a positive function with lim(t ->infinity)b(t)/lambda(t) = 0.
引用
收藏
页码:1527 / 1536
页数:10
相关论文
共 19 条
[1]  
Cline D. B. H., 1998, LARGE DEVIATION PROB
[2]  
Dembo A., 2010, Large Deviations Techniques and Applications
[3]  
Embrechts P., 1997, Modelling extremal events for insurance and finance, DOI 10.1007/978-3-642-33483-2
[4]  
Heyde C. C., 1968, SANKYA, V30, P253
[5]   A CONTRIBUTION TO THEORY OF LARGE DEVIATIONS FOR SUMS OF INDEPENDENT RANDOM VARIABLES [J].
HEYDE, CC .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 7 (05) :303-&
[6]   ON LARGE DEVIATION PROBLEMS FOR SUMS OF RANDOM VARIABLES WHICH ARE NOT ATTRACTED TO NORMAL LAW [J].
HEYDE, CC .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (05) :1575-&
[7]  
HU YJ, 2002, LARGE DEVIATIONS HEA
[8]   Large deviations of heavy-tailed random sums with applications in insurance and finance [J].
Kluppelberg, C ;
Mikosch, T .
JOURNAL OF APPLIED PROBABILITY, 1997, 34 (02) :293-308
[9]  
Linnik J.V., 1961, I. Teor. Verojatnost. i Primenen, V6, P145
[10]  
Linnik Yu. V., 1961, Teor. Veroyatn. Ee Primen, V6, P377