SIMULATION OF THE FORMATION OF A SOLAR ACTIVE REGION

被引:222
作者
Cheung, M. C. M. [1 ]
Rempel, M. [2 ]
Title, A. M. [1 ]
Schuessler, M. [3 ]
机构
[1] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA
[2] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA
[3] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany
基金
美国国家科学基金会;
关键词
convection; magnetohydrodynamics (MHD); radiative transfer; Sun: atmosphere; Sun: photosphere; Sun: surface magnetism; sunspots; VECTOR MAGNETIC-FIELDS; FLUX TUBE EMERGENCE; CONVECTION ZONE; EMERGING FLUX; MHD SIMULATIONS; EVOLUTION; FEATURES; LOOPS; MAGNETOCONVECTION; MODEL;
D O I
10.1088/0004-637X/720/1/233
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B proportional to rho(1/2). The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 84 条
[31]   VECTOR MAGNETIC FIELDS AND DOPPLER VELOCITY STRUCTURES AROUND A CANCELLATION SITE IN THE QUIET SUN [J].
Iida, Y. ;
Yokoyama, T. ;
Ichimoto, K. .
ASTROPHYSICAL JOURNAL, 2010, 713 (01) :325-329
[32]   THREE-DIMENSIONAL VIEW OF TRANSIENT HORIZONTAL MAGNETIC FIELDS IN THE PHOTOSPHERE [J].
Ishikawa, Ryohko ;
Tsuneta, Saku ;
Jurcak, Jan .
ASTROPHYSICAL JOURNAL, 2010, 713 (02) :1310-1321
[33]   Convection-driven emergence of small-scale magnetic fields and their role in coronal heating and solar wind acceleration [J].
Isobe, H. ;
Proctor, M. R. E. ;
Weiss, N. O. .
ASTROPHYSICAL JOURNAL LETTERS, 2008, 679 (01) :L57-L60
[34]   Ellerman bombs and jets associated with resistive flux emergence [J].
Isobe, H. ;
Tripathi, D. ;
Archontis, V. .
ASTROPHYSICAL JOURNAL, 2007, 657 (01) :L53-L56
[35]   Filamentary structure on the Sun from the magnetic Rayleigh-Taylor instability [J].
Isobe, H ;
Miyagoshi, T ;
Shibata, K ;
Yokoyama, T .
NATURE, 2005, 434 (7032) :478-481
[36]   THREE-DIMENSIONAL NONLINEAR EVOLUTION OF A MAGNETIC FLUX TUBE IN A SPHERICAL SHELL: INFLUENCE OF TURBULENT CONVECTION AND ASSOCIATED MEAN FLOWS [J].
Jouve, Laurene ;
Brun, Allan Sacha .
ASTROPHYSICAL JOURNAL, 2009, 701 (02) :1300-1322
[37]   EXPLANATION OF THE SEA-SERPENT MAGNETIC STRUCTURE OF SUNSPOT PENUMBRAE [J].
Kitiashvili, I. N. ;
Bellot Rubio, L. R. ;
Kosovichev, A. G. ;
Mansour, N. N. ;
Dalda, A. Sainz ;
Wray, A. A. .
ASTROPHYSICAL JOURNAL LETTERS, 2010, 716 (02) :L181-L184
[38]   The Hinode (Solar-B) mission:: An overview [J].
Kosugi, T. ;
Matsuzaki, K. ;
Sakao, T. ;
Shimizu, T. ;
Sone, Y. ;
Tachikawa, S. ;
Hashimoto, T. ;
Minesugi, K. ;
Ohnishi, A. ;
Yamada, T. ;
Tsuneta, S. ;
Hara, H. ;
Ichimoto, K. ;
Suematsu, Y. ;
Shimojo, M. ;
Watanabe, T. ;
Shimada, S. ;
Davis, J. M. ;
Hill, L. D. ;
Owens, J. K. ;
Title, A. M. ;
Culhane, J. L. ;
Harra, L. K. ;
Doschek, G. A. ;
Golub, L. .
SOLAR PHYSICS, 2007, 243 (01) :3-17
[39]  
Krause F., 1980, MEAN FIELD MAGNETOHY, P271
[40]   Vector magnetic fields of moving magnetic features and flux removal from a sunspot [J].
Kubo, M. ;
Shimizu, T. ;
Tsuneta, S. .
ASTROPHYSICAL JOURNAL, 2007, 659 (01) :812-828