Asymptotic description of a viscous fluid layer

被引:4
作者
Cerda, E [1 ]
Rojas, R
Tirapegui, E
机构
[1] Univ Santiago, Dept Fis, Santiago, Chile
[2] Ctr Fis No Lineal & Sistemas Complejos Santiago, Santiago, Chile
[3] Univ Chile, Fac Ciencias Fis & Matemat, Dept Ingn Matemat, Santiago, Chile
[4] Univ Chile, Dept Fis, Fac Ciencias Fis & Matemat, Santiago, Chile
关键词
Faraday instability; viscous fluid;
D O I
10.1023/A:1026411510531
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that the exact non local equation derived by the present authors for the temporal linear evolution of the surface of a viscous incompressible fluid reduces asymptotically for high viscosity to a second order Mathieu type equation proposed recently by Cerda and Tirapegui. The equation describes a strongly damped pendulum and the conditions of validity of the asymptotic regime are given in terms of the relevant physical parameters.
引用
收藏
页码:553 / 565
页数:13
相关论文
共 9 条
[1]   THE STABILITY OF THE PLANE FREE SURFACE OF A LIQUID IN VERTICAL PERIODIC MOTION [J].
BENJAMIN, TB ;
URSELL, F .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1954, 225 (1163) :505-515
[2]   FARADAY INSTABILITY - LINEAR-ANALYSIS FOR VISCOUS FLUIDS [J].
BEYER, J ;
FRIEDRICH, R .
PHYSICAL REVIEW E, 1995, 51 (02) :1162-1168
[3]   Faraday's instability for viscous fluids [J].
Cerda, E ;
Tirapegui, E .
PHYSICAL REVIEW LETTERS, 1997, 78 (05) :859-862
[4]  
CERDA E, 1996, B ACAD R BELGIQUE, V7, P301
[5]   Faraday's instability in viscous fluid [J].
Cerda, EA ;
Tirapegui, EL .
JOURNAL OF FLUID MECHANICS, 1998, 368 :195-228
[6]   Linear theory of Faraday instability in viscous liquids [J].
Kumar, K .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1948) :1113-1126
[7]   PARAMETRIC-INSTABILITY OF THE INTERFACE BETWEEN 2 FLUIDS [J].
KUMAR, K ;
TUCKERMAN, LS .
JOURNAL OF FLUID MECHANICS, 1994, 279 :49-68
[8]  
MASLOV VP, 1981, SEMICLASICAL APPROXI
[9]   Analytic stability theory for Faraday waves and the observation of the harmonic surface response [J].
Muller, HW ;
Wittmer, H ;
Wagner, C ;
Albers, J ;
Knorr, K .
PHYSICAL REVIEW LETTERS, 1997, 78 (12) :2357-2360