A hierarchy of models for type-II superconductors

被引:66
作者
Chapman, SJ [1 ]
机构
[1] Math Inst, Oxford OX1 3LB, England
关键词
superconductivity; vortices; homogenization; critical state; Bean; vortex density; London; Ginzburg-Landau;
D O I
10.1137/S0036144599371913
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A hierarchy of models for type-II superconductors is presented. Through appropriate asymptotic limits we pass from the mesoscopic Ginzburg-Landau model to the London model with isolated superconducting vortices as line singularities, to vortex-density models, and finally to macroscopic critical-state models.
引用
收藏
页码:555 / 598
页数:44
相关论文
共 65 条
[51]   Analysis of critical-state problems in type-II superconductivity [J].
Prigozhin, L .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1997, 7 (04) :3866-3873
[52]  
Prigozhin L., 1996, European J. Appl. Math., V7, P237, DOI [10.1017/s0956792500002333, DOI 10.1017/S0956792500002333]
[53]  
PRIGOZHIN L, 1998, COMMUNICATION
[54]  
PRIGOZHIN L, 1998, CRITICAL STATES TYPE
[55]   Ill-posedness of the mean-field model of superconducting vortices and a possible regularisation [J].
Richardson, G ;
Stoth, B .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2000, 11 :137-152
[56]   Instability of a superconducting line vortex [J].
Richardson, G .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 110 (1-2) :139-153
[57]  
RICHARDSON GW, 1995, THESIS OXFORD U OXFO
[58]   Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field [J].
Sandier, E ;
Serfaty, S .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (01) :119-145
[59]  
SANDIER E, 2000, ENERGY TYPE 2 SUPERC
[60]  
SANDIER E, 2000, RIGOROUS DERIVATION