Role of atomic terraces and steps in the electron transport properties of epitaxial graphene grown on SiC

被引:20
作者
Kuramochi, H. [1 ,2 ]
Odaka, S. [3 ]
Morita, K. [4 ]
Tanaka, S. [4 ]
Miyazaki, H. [1 ,2 ]
Lee, M. V. [1 ]
Li, S. -L. [1 ]
Hiura, H. [5 ]
Tsukagoshi, K. [1 ,2 ]
机构
[1] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton MANA, Tsukuba, Ibaraki 3050044, Japan
[2] Japan Sci & Technol Agcy JST, Kawaguchi, Saitama 3320012, Japan
[3] Tokyo Inst Technol, Yokohama, Kanagawa 2268502, Japan
[4] Kyushu Univ, Fukuoka 8120395, Japan
[5] NEC Corp Ltd, Green Innovat Res Labs, Tsukuba, Ibaraki 3058501, Japan
基金
日本学术振兴会;
关键词
GRAPHITE; LAYERS; GAS;
D O I
10.1063/1.3679400
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thermal decomposition of vicinal SiC substrates with self-organized periodic nanofacets is a promising method to produce large graphene sheets toward the commercial exploitation of graphene's superior electronic properties. The epitaxial graphene films grown on vicinal SiC comprise two distinct regions of terrace and step; and typically exhibit anisotropic electron transport behavior, although limited areas in the graphene film showed ballistic transport. To evaluate the role of terraces and steps in electron transport properties, we compared graphene samples with terrace and step regions grown on 4H-SiC(0001). Arrays of field effect transistors were fabricated on comparable graphene samples with their channels parallel or perpendicular to the nanofacets to identify the source of measured reduced mobility. Minimum conductivity and electron mobility increased with the larger proportional terrace region area; therefore, the terrace region has superior transport properties to step regions. The measured electron mobility in the terrace region, similar to 1000 cm(2)/Vs, is 10 times larger than that in the step region, similar to 100 cm(2)/Vs. We conclusively determine that parasitic effects originate in regions of graphene that grow over step edges in 4H-SiC(0001). Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [doi: 10.1063/1.3679400]
引用
收藏
页数:10
相关论文
共 49 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Transmission electron microscopy and scanning tunneling microscopy investigations of graphene on 4H-SiC(0001) [J].
Borysiuk, J. ;
Bozek, R. ;
Strupinski, W. ;
Wysmolek, A. ;
Grodecki, K. ;
Stepniewski, R. ;
Baranowski, J. M. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (02)
[4]   Hysteresis in the resistance of a graphene device induced by charge modulation in the substrate [J].
Brant, J. C. ;
Leon, J. ;
Barbosa, T. C. ;
Araujo, E. N. D. ;
Archanjo, B. S. ;
Plentz, F. ;
Alves, E. S. .
APPLIED PHYSICS LETTERS, 2010, 97 (04)
[5]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[6]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[7]   Defect Scattering in Graphene [J].
Chen, Jian-Hao ;
Cullen, W. G. ;
Jang, C. ;
Fuhrer, M. S. ;
Williams, E. D. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[8]   Monolayer graphene from graphite oxide [J].
Dideykin, A. ;
Aleksenskiy, A. E. ;
Kirilenko, D. ;
Brunkov, P. ;
Goncharov, V. ;
Baidakova, M. ;
Sakseev, D. ;
Vul', A. Ya. .
DIAMOND AND RELATED MATERIALS, 2011, 20 (02) :105-108
[9]   Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors [J].
Dimitrakopoulos, Christos ;
Lin, Yu-Ming ;
Grill, Alfred ;
Farmer, Damon B. ;
Freitag, Marcus ;
Sun, Yanning ;
Han, Shu-Jen ;
Chen, Zhihong ;
Jenkins, Keith A. ;
Zhu, Yu ;
Liu, Zihong ;
McArdle, Timothy J. ;
Ott, John A. ;
Wisnieff, Robert ;
Avouris, Phaedon .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (05) :985-992
[10]   Growth kinetics of epitaxial graphene on SiC substrates [J].
Drabinska, A. ;
Grodecki, K. ;
Strupinski, W. ;
Bozek, R. ;
Korona, K. P. ;
Wysmolek, A. ;
Stepniewski, R. ;
Baranowski, J. M. .
PHYSICAL REVIEW B, 2010, 81 (24)