Boundary blow-up solutions of p-Laplacian elliptic equations with lower order terms

被引:7
作者
Li, Huiling [1 ]
Pang, Peter Y. H. [2 ]
Wang, Mingxin [3 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210018, Jiangsu, Peoples R China
[2] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[3] Harbin Inst Technol, Nat Sci Res Ctr, Harbin 150080, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2012年 / 63卷 / 02期
关键词
Blow-up solution; Comparison principle; QUASI-LINEAR EQUATIONS; ASYMPTOTIC-BEHAVIOR; POSITIVE SOLUTIONS; UNIQUENESS; EXISTENCE; DIFFUSION; SYSTEM;
D O I
10.1007/s00033-011-0175-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence, uniqueness, and asymptotic behavior of blow-up solutions for a general quasilinear elliptic equation of the type -Delta (p) u = a(x)u (m) -b(x)f(u) with p > 1 and 0 < m < p-1. The main technical tool is a new comparison principle that enables us to extend arguments for semilinear equations to quasilinear ones. Indeed, this paper is an attempt to generalize all available results for the semilinear case with p = 2 to the quasilinear case with p > 1.
引用
收藏
页码:295 / 311
页数:17
相关论文
共 45 条
[1]  
[Anonymous], 1976, LECT NOTES MATH
[2]  
[Anonymous], HIROSHIMA MATH J
[3]  
[Anonymous], COMMUN CONTEMP MATH
[4]   LARGE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS - EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR [J].
BANDLE, C ;
MARCUS, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :9-24
[5]  
Bandle R., 1981, COMMUN MATH PHYS, V79, P167
[6]  
Bieberbach L., 1916, Math. Ann, V77, P173, DOI [10.1007/BF01456901, DOI 10.1007/BF01456901]
[7]  
Binghan N. H., 1987, REGULAR VARIATION
[8]   Existence of positive solutions for some problems with nonlinear diffusion [J].
Canada, A ;
Drabek, P ;
Gamez, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (10) :4231-4249
[9]   Existence, uniqueness and blow-up rate of large solutions for a canonical class of one-dimensional problems on the half-line [J].
Cano-Casanova, Santiago ;
Lopez-Gomez, Julian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (12) :3180-3203
[10]  
Cîrstea FC, 2006, ASYMPTOTIC ANAL, V46, P275