Comparison between a crowbar and an R-SFCL to improve Fault Ride-Through Capacity of DFIG-based Wind Turbines

被引:1
作者
Arduini, Fernando R. [1 ]
Asada, Eduardo N. [1 ]
Bellmunt, Oriol G. [2 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn, BR-13566590 Sao Carlos, Brazil
[2] CITCEA UPC, Barcelona 08028, Spain
来源
2021 IEEE MADRID POWERTECH | 2021年
基金
巴西圣保罗研究基金会;
关键词
DFIG; Fault Ride-Through; R-SFCL; Fault Current Limiter; Crowbar; CURRENT LIMITERS;
D O I
10.1109/PowerTech46648.2021.9494924
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Fault Ride-Through capacity is increasingly being demanded for wind turbines connected to the distribution networks. For DFIG-based turbines, achieving this requirement is even more difficult since this topology is vulnerable to voltage sags. The most popular solution employed for DFIG to ride through short-duration faults is crowbar protection, however other potential strategies have been presented in the literature. This paper aims to compare the performance between the crowbar and the resistive-type superconducting fault current limiter placed at the DFIG rotor side. For each scheme, different crowbar and R-SFCL resistances and activation currents were investigated to make the comparison fair. The results showed that the R-SFCL performed better in improving the FRT capacity of a distributed DFIG.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Fault-Ride Through Capability Enhancement of DFIG-Based Wind Turbines by SFCL
    Abdellatif, Walid S. E.
    Alaboudy, Ali H. Kasem
    Azmy, Ahmed M.
    2018 TWENTIETH INTERNATIONAL MIDDLE EAST POWER SYSTEMS CONFERENCE (MEPCON), 2018, : 1104 - 1109
  • [2] Improved Crowbar Control Strategy of DFIG Based Wind Turbines for Grid Fault Ride-Through
    Peng, Ling
    Francois, Bruno
    Li, Yongdong
    APEC: 2009 IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION, VOLS 1- 4, 2009, : 1932 - +
  • [3] Modeling of complete fault ride-through processes for DFIG-Based wind turbines
    Li, Weixing
    Chao, Pupu
    Liang, Xiaodong
    Sun, Yong
    Qi, Jinling
    Chang, Xuefei
    RENEWABLE ENERGY, 2018, 118 : 1001 - 1014
  • [4] Study of fault ride-through for DFIG based wind turbines
    Bing, X
    Fox, B
    Flynn, D
    PROCEEDINGS OF THE 2004 IEEE INTERNATIONAL CONFERENCE ON ELECTRIC UTILITY DEREGULATION, RESTRUCTURING AND POWER TECHNOLOGIES, VOLS 1 AND 2, 2004, : 411 - 416
  • [5] Improving the Fault Ride-through Capability of DFIG-Based Wind Turbines Using the Dynamic Impedance
    Liang, Yabo
    Cao, Yunzhu
    Li, Lei
    Sheng, Yaru
    Niu, Jian
    He, Jianan
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1185 - 1189
  • [6] A new hybrid multilevel converter for DFIG-based wind turbines fault ride-through and transient stability enhancement
    Amorim, Arthur E. A.
    Carletti, Daniel
    Fardin, Jussara F.
    Encarnacao, Lucas F.
    Simonetti, Domingos S. L.
    ELECTRICAL ENGINEERING, 2020, 102 (02) : 1035 - 1050
  • [7] An efficient crowbar to improve the low voltage ride-Through capability of wind turbines based on DFIG excited by an indirect matrix converter
    Khajeh A.
    Ghazi R.
    Abardeh M.H.
    Sadegh M.O.
    International Journal of Power Electronics, 2020, 11 (02): : 195 - 210
  • [8] A new hybrid multilevel converter for DFIG-based wind turbines fault ride-through and transient stability enhancement
    Arthur E. A. Amorim
    Daniel Carletti
    Jussara F. Fardin
    Lucas F. Encarnação
    Domingos S. L. Simonetti
    Electrical Engineering, 2020, 102 : 1035 - 1050
  • [9] Second-order sliding mode control for DFIG-based wind turbines fault ride-through capability enhancement
    Benbouzid, Mohamed
    Beltran, Brice
    Amirat, Yassine
    Yao, Gang
    Han, Jingang
    Mangel, Herve
    ISA TRANSACTIONS, 2014, 53 (03) : 827 - 833
  • [10] Nonlinear dynamic modeling for fault ride-through capability of DFIG-based wind farm
    M. Kenan Döşoğlu
    Nonlinear Dynamics, 2017, 89 : 2683 - 2694