Hybrid Photon-Plasmon Coupling and Ultrafast Control of Nanoantennas on a Silicon Photonic Chip

被引:33
作者
Chen, Bigeng [1 ]
Bruck, Roman [1 ,3 ]
Traviss, Daniel [1 ,4 ]
Khokhar, Ali Z. [2 ]
Reynolds, Scott [2 ]
Thomson, David J. [2 ]
Mashanovich, Goran Z. [2 ]
Reed, Graham T. [2 ]
Muskens, Otto L. [1 ]
机构
[1] Univ Southampton, Fac Phys Sci & Engn, Phys & Astron, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Fac Phys Sci & Engn, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England
[3] Luxtera, 320 Camino Vida Roble, Carlsbad, CA 92011 USA
[4] Coherent Inc, West Scotland Sci Pk, Glasgow G20 0XA, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Nanoantennas; plasmonics; silicon photonics; coherent perfect absorption (CPA); COHERENT PERFECT ABSORPTION; WAVE-GUIDE; SINGLE; PLATFORM; CAVITY; LIGHT; RESONATOR; CHAIN;
D O I
10.1021/acs.nanolett.7b04861
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hybrid integration of nanoplasmonic devices with silicon photonic circuits holds promise for a range of applications in on-chip sensing, field-enhanced and nonlinear spectroscopy, and integrated nanophotonic switches. Here, we demonstrate a new regime of photon-plasmon coupling by combining a silicon photonic resonator with plasmonic nanoantennas. Using principles from coherent perfect absorption, we make use of standing-wave light fields to maximize the photon-plasmon interaction strength. Precise placement of the broadband antennas with respect to the narrowband photonic racetrack modes results in controlled hybridization of only a subset of these modes. By combining antennas into groups of radiating dipoles with opposite phase, far-field scattering is effectively suppressed. We achieve ultrafast tuning of photon-plasmon hybridization including reconfigurable routing of the standing-wave input between two output ports. Hybrid photonic-plasmonic resonators provide conceptually new approaches for on-chip integrated nanophotonic devices.
引用
收藏
页码:610 / 617
页数:8
相关论文
共 33 条
[1]   Cavity Plasmonics: Large Normal Mode Splitting of Electric and Magnetic Particle Plasmons Induced by a Photonic Microcavity [J].
Ameling, Ralf ;
Giessen, Harald .
NANO LETTERS, 2010, 10 (11) :4394-4398
[2]   Plasmonic Antennas Hybridized with Dielectric Waveguides [J].
Arango, Felipe Bernal ;
Kwadrin, Andrej ;
Koenderink, A. Femius .
ACS NANO, 2012, 6 (11) :10156-10167
[3]   Coherent perfect absorbers: linear control of light with light [J].
Baranov, Denis G. ;
Krasnok, Alex ;
Shegai, Timur ;
Alu, Andrea ;
Chong, Yidong .
NATURE REVIEWS MATERIALS, 2017, 2 (12)
[4]  
Bruck R, 2015, NAT PHOTONICS, V9, P54, DOI [10.1038/nphoton.2014.274, 10.1038/NPHOTON.2014.274]
[5]   Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches [J].
Bruck, Roman ;
Muskens, Otto L. .
OPTICS EXPRESS, 2013, 21 (23) :27652-27661
[6]   Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators [J].
Chamanzar, Maysamreza ;
Adibi, Ali .
OPTICS EXPRESS, 2011, 19 (22) :22292-22304
[7]   Coherent Perfect Absorbers: Time-Reversed Lasers [J].
Chong, Y. D. ;
Ge, Li ;
Cao, Hui ;
Stone, A. D. .
PHYSICAL REVIEW LETTERS, 2010, 105 (05)
[8]   Antenna-Cavity Hybrids: Matching Polar Opposites for Purcell Enhancements at Any Linewidth [J].
Doeleman, Hugo M. ;
Verhagen, Ewold ;
Koenderink, A. Femius .
ACS PHOTONICS, 2016, 3 (10) :1943-1951
[9]   Collective scattering in hybrid nanostructures with many atomic oscillators coupled to an electromagnetic resonance [J].
Fauche, Pierre ;
Kosionis, Spyridon G. ;
Lalanne, Philippe .
PHYSICAL REVIEW B, 2017, 95 (19)
[10]   Single-mode laser by parity-time symmetry breaking [J].
Feng, Liang ;
Wong, Zi Jing ;
Ma, Ren-Min ;
Wang, Yuan ;
Zhang, Xiang .
SCIENCE, 2014, 346 (6212) :972-975