On the generation of dispersive shock waves

被引:14
作者
Miller, Peter D. [1 ]
机构
[1] Univ Michigan, Dept Math, East Hall,530 Church St, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Semiclassical limit; Small-dispersion limit; Lax-Levermore theory; Deift-Zhou steepest descent method; Universality; INVERSE SCATTERING TRANSFORM; NONLINEAR SCHRODINGER-EQUATION; BENJAMIN-ONO-EQUATION; KORTEWEG-DE-VRIES; TRITRONQUEE SOLUTION; SEMICLASSICAL LIMIT; UNIVERSALITY; ASYMPTOTICS; POLYNOMIALS; CATASTROPHE;
D O I
10.1016/j.physd.2016.04.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review various methods for the analysis of initial-value problems for integrable dispersive equations in the weak-dispersion or semiclassical regime. Some methods are sufficiently powerful to rigorously explain the generation of modulated wavetrains, so-called dispersive shock waves, as the result of shock formation in a limiting dispersionless system. They also provide a detailed description of the solution near caustic curves that delimit dispersive shock waves, revealing fascinating universal wave patterns. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:66 / 83
页数:18
相关论文
共 50 条
[1]  
[Anonymous], 1975, AM MATH SOC C PUBLIC
[2]  
[Anonymous], 2010, Handbook of Mathematical Functions
[3]   Numerical study of time-splitting spectral discretizations of nonlinear Schrodinger equations in the semiclassical regimes [J].
Bao, WZ ;
Jin, S ;
Markowich, PA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (01) :27-64
[4]   LINEAR SPECTRAL PROBLEMS, NON-LINEAR EQUATIONS AND THE DELTA-BAR-METHOD [J].
BEALS, R ;
COIFMAN, RR .
INVERSE PROBLEMS, 1989, 5 (02) :87-130
[5]   Universality in the Profile of the Semiclassical Limit Solutions to the Focusing Nonlinear Schrodinger Equation at the First Breaking Curve [J].
Bertola, Marco ;
Tovbis, Alexander .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (11) :2119-2167
[6]   Universality for the Focusing Nonlinear Schrodinger Equation at the Gradient Catastrophe Point: Rational Breathers and Poles of the Tritronquee Solution to Painleve I [J].
Bertola, Marco ;
Tovbis, Alexander .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (05) :678-752
[7]  
Buckingham R.J., 2013, Mem. Amer. Math. Soc, V225, P136, DOI DOI 10.1090/S0065-9266-2012-00672-1
[8]  
Buckingham R.J., 2016, 3 WAVE INTERAC UNPUB
[9]   THE SINE-GORDON EQUATION IN THE SEMICLASSICAL LIMIT: CRITICAL BEHAVIOR NEAR A SEPARATRIX (vol 118, pg 397, 2012) [J].
Buckingham, Robert J. ;
Miller, Peter D. .
JOURNAL D ANALYSE MATHEMATIQUE, 2013, 119 :403-405
[10]  
Chester C., 1957, P CAMB PHILOS SOC, V53, P599, DOI DOI 10.1017/S0305004100032655