Conservation property of symmetric jump processes

被引:30
作者
Masamune, Jun [1 ]
Uemura, Toshihiro [2 ]
机构
[1] Penn State Altoona, Dept Math & Stat, Altoona, PA 16601 USA
[2] Kansai Univ, Fac Engn Sci, Dept Math, Osaka 5648680, Japan
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2011年 / 47卷 / 03期
关键词
Conservation property; Symmetric Dirichlet forms with jumps; Derivation property; PSEUDO DIFFERENTIAL-OPERATORS; STABLE-LIKE PROCESSES; FELLER PROPERTY; DIRICHLET FORMS; PATH PROPERTIES; HEAT; MANIFOLDS; SPACES;
D O I
10.1214/09-AIHP368
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by the recent development in the theory of jump processes, we investigate its conservation property. We will show that a jump process is conservative under certain conditions for the volume-growth of the underlying space and the jump rate of the process. We will also present examples of jump processes which satisfy these conditions.
引用
收藏
页码:650 / 662
页数:13
相关论文
共 24 条
[1]  
[Anonymous], 1973, CAMBRIDGE MONOGRAPHS
[2]  
[Anonymous], 1994, DEGRUYTER STUDIES MA
[3]  
Aronszajn N., 1961, Annales de Linstitut Fourier, V11, P385, DOI DOI 10.5802/AIF.116
[4]  
Barlow MT, 2009, T AM MATH SOC, V361, P1963
[5]  
Chen M.-F., 2004, From Markov Chains to Non-Equilibrium Particle Systems, V2nd
[6]   Weighted Poincare inequality and heat kernel estimates for finite range jump processes [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Kumagai, Takashi .
MATHEMATISCHE ANNALEN, 2008, 342 (04) :833-883
[7]   Heat kernel estimates for jump processes of mixed types on metric measure spaces [J].
Chen, Zhen-Qing ;
Kumagai, Takashi .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (1-2) :277-317
[8]   HEAT KERNEL BOUNDS, CONSERVATION OF PROBABILITY AND THE FELLER PROPERTY [J].
DAVIES, EB .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :99-119
[10]  
GRIGORIAN AA, 1986, DOKL AKAD NAUK SSSR+, V290, P534