massNet: integrated processing and classification of spatially resolved mass spectrometry data using deep learning for rapid tumor delineation

被引:20
作者
Abdelmoula, Walid M. [1 ,2 ]
Stopka, Sylwia A. [1 ,3 ]
Randall, Elizabeth C. [3 ]
Regan, Michael [1 ]
Agar, Jeffrey N. [4 ]
Sarkaria, Jann N. [5 ]
Wells, William M. [3 ,6 ]
Kapur, Tina [3 ]
Agar, Nathalie Y. R. [1 ,3 ,7 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Neurosurg, Boston, MA 02115 USA
[2] Invicro LLC, Boston, MA 02210 USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, Boston, MA 02115 USA
[4] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02111 USA
[5] Mayo Clin, Dept Radiat Oncol, Rochester, MN 55902 USA
[6] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[7] Harvard Med Sch, Dept Canc Biol, Dana Farber Canc Inst, Boston, MA 02115 USA
关键词
IMAGING DATA; CANCER; METABOLITE; HISTOLOGY;
D O I
10.1093/bioinformatics/btac032
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Mass spectrometry imaging (MSI) provides rich biochemical information in a label-free manner and therefore holds promise to substantially impact current practice in disease diagnosis. However, the complex nature of MSI data poses computational challenges in its analysis. The complexity of the data arises from its large size, high-dimensionality and spectral nonlinearity. Preprocessing, including peak picking, has been used to reduce raw data complexity; however, peak picking is sensitive to parameter selection that, perhaps prematurely, shapes the downstream analysis for tissue classification and ensuing biological interpretation. Results: We propose a deep learning model, massNet, that provides the desired qualities of scalability, nonlinearity and speed in MSI data analysis. This deep learning model was used, without prior preprocessing and peak picking, to classify MSI data from a mouse brain harboring a patient-derived tumor. The massNet architecture established automatically learning of predictive features, and automated methods were incorporated to identify peaks with potential for tumor delineation. The model's performance was assessed using cross-validation, and the results demonstrate higher accuracy and a substantial gain in speed compared to the established classical machine learning method, support vector machine.
引用
收藏
页码:2015 / 2021
页数:7
相关论文
共 58 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Abdelmoula W.M, 2020, NAT COMMUN, V12, P1
  • [3] Data-driven identification of prognostic tumor subpopulations using spatially mapped t-SNE of mass spectrometry imaging data
    Abdelmoula, Walid M.
    Balluff, Benjamin
    Englert, Sonja
    Dijkstra, Jouke
    Reinders, Marcel J. T.
    Walch, Axel
    McDonnell, Liam A.
    Lelieveldt, Boudewijn P. F.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (43) : 12244 - 12249
  • [4] Automatic Generic Registration of Mass Spectrometry Imaging Data to Histology Using Nonlinear Stochastic Embedding
    Abdelmoula, Walid M.
    Skraskova, Karolina
    Balluff, Benjamin
    Carreira, Ricardo J.
    Tolner, Else A.
    Lelieveldt, Boudewijn P. F.
    van der Maaten, Laurens
    Morreau, Hans
    van den Maagdenberg, Arn M. J. M.
    Heeren, Ron M. A.
    McDonnell, Liam A.
    Dijkstra, Jouke
    [J]. ANALYTICAL CHEMISTRY, 2014, 86 (18) : 9204 - 9211
  • [5] Current State and Future Challenges of Mass Spectrometry Imaging for Clinical Research
    Addie, Ruben D.
    Balluff, Benjamin
    Bovee, Judith V. M. G.
    Morreau, Hans
    McDonnell, Liam A.
    [J]. ANALYTICAL CHEMISTRY, 2015, 87 (13) : 6426 - 6433
  • [6] Spatial Metabolomics and Imaging Mass Spectrometry in the Age of Artificial Intelligence
    Alexandrov, Theodore
    [J]. ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 3, 2020, 2020, 3 : 61 - 87
  • [7] MALDI imaging mass spectrometry: statistical data analysis and current computational challenges
    Alexandrov, Theodore
    [J]. BMC BIOINFORMATICS, 2012, 13
  • [8] Spatial Segmentation of Imaging Mass Spectrometry Data with Edge-Preserving Image Denoising and Clustering
    Alexandrov, Theodore
    Becker, Michael
    Deininger, Soren-Oliver
    Ernst, Gunther
    Wehder, Liane
    Grasmair, Markus
    von Eggeling, Ferdinand
    Thiele, Herbert
    Maass, Peter
    [J]. JOURNAL OF PROTEOME RESEARCH, 2010, 9 (12) : 6535 - 6546
  • [9] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [10] [Anonymous], 2011, Acm T. Intel. Syst. Tec., DOI DOI 10.1145/1961189.1961199