Partial regularity for manifold constrained p(x)-harmonic maps

被引:19
作者
De Filippis, Cristiana [1 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
HOLDER CONTINUITY; MINIMIZERS; FUNCTIONALS; P(X)-ENERGY; CALCULUS; MINIMA; BOUNDARY;
D O I
10.1007/s00526-019-1483-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that manifold constrained p(x)-harmonic maps are locally C1,0-regular outside a set of zero n-dimensional Lebesgue's measure, for some 0(0,1). We also provide an estimate from above of the Hausdorff dimension of the singular set.
引用
收藏
页数:38
相关论文
共 54 条
[1]   REGULARITY FOR MINIMIZERS OF NON-QUADRATIC FUNCTIONALS - THE CASE 1-LESS-THAN-P-LESS-THAN-2 [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 140 (01) :115-135
[2]   Regularity results for electrorheological fluids: the stationary case [J].
Acerbi, E ;
Mingione, G .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (09) :817-822
[3]  
[Anonymous], ANN SC NORM SUPER PI
[4]  
[Anonymous], 1998, RESULTS MATH RELATED
[5]  
[Anonymous], MANIFOLD CONSTRAINED
[6]  
[Anonymous], 1983, MULTIPLE INTEGRALS C
[7]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
[8]  
[Anonymous], 1998, ATTI SEMIN MAT FIS
[9]  
[Anonymous], 1984, Ann. Scuola Norm. Sup. Pisa Cl. Sci
[10]  
[Anonymous], 1986, THESIS WASHINGTON U