A condition for modular lattices

被引:0
作者
Wang, Jun [1 ]
Wu, Jun [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
geometric lattice; modular lattice; chain; cutset;
D O I
10.1007/s00012-007-2064-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proves that a geometric lattice of rank n is a modular lattice if its every maximal chain contains a modular element of rank greater than 1 and less than n. This result is generalized to a more general lattices of finite rank.
引用
收藏
页码:491 / 496
页数:6
相关论文
共 50 条
[31]   STRONGLY FULLY INVARIANT-EXTENDING MODULAR LATTICES [J].
Albu, Toma ;
Kara, Yeliz ;
Tercan, Adnan .
QUAESTIONES MATHEMATICAE, 2022, 45 (03) :357-367
[32]   Two Notes on the Variety Generated by Planar Modular Lattices [J].
Czedli, Gabor ;
Maroti, Miklos .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2009, 26 (02) :109-117
[33]   SOME ASPECTS OF MODULAR LATTICES WITH DUAL KRULL DIMENSION [J].
Teply, Mark L. ;
Rim, Seog Hoon .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2005, 4 (03) :237-244
[34]   On the number of join irreducibles and acyclicity in finite modular lattices [J].
Herrmann, Christian .
ALGEBRA UNIVERSALIS, 2010, 64 (3-4) :433-444
[35]   Modular C11 lattices and lattice preradicals [J].
Albu, Toma ;
Iosif, Mihai .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (06)
[36]   Galois theory for a certain class of complete modular lattices [J].
Panin A.A. .
Journal of Mathematical Sciences, 1999, 95 (2) :2123-2125
[37]   On the number of join irreducibles and acyclicity in finite modular lattices [J].
Christian Herrmann .
Algebra universalis, 2010, 64 :433-444
[38]   Commutative unary algebras with modular and distributive topology lattices [J].
Kartashova, Anna .
COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) :1041-1051
[39]   MODULAR QFD LATTICES WITH APPLICATIONS TO GROTHENDIECK CATEGORIES AND TORSION THEORIES [J].
Albu, Toma ;
Iosif, Mihai ;
Teply, Mark L. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2004, 3 (04) :391-410
[40]   AN EXTENSION OF F. SIK'S THEOREM ON MODULAR LATTICES [J].
Lazarz, Marcin .
MATHEMATICA SLOVACA, 2018, 68 (06) :1321-1326