A condition for modular lattices

被引:0
作者
Wang, Jun [1 ]
Wu, Jun [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
geometric lattice; modular lattice; chain; cutset;
D O I
10.1007/s00012-007-2064-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proves that a geometric lattice of rank n is a modular lattice if its every maximal chain contains a modular element of rank greater than 1 and less than n. This result is generalized to a more general lattices of finite rank.
引用
收藏
页码:491 / 496
页数:6
相关论文
共 50 条
[21]   Regular coverings in complete modular lattices [J].
Rowan, WH .
ALGEBRA UNIVERSALIS, 1997, 37 (01) :77-80
[22]   The conditions (Ci) in modular lattices, and applications [J].
Albu, Toma ;
Iosif, Mihai ;
Tercan, Adnan .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (01)
[23]   Pappian implies Arguesian for modular lattices [J].
Takách, G .
ALGEBRA UNIVERSALIS, 1999, 42 (1-2) :151-152
[24]   On the finiteness problem for classes of modular lattices [J].
Christian Herrmann .
Algebra universalis, 2019, 80
[25]   On the finiteness problem for classes of modular lattices [J].
Herrmann, Christian .
ALGEBRA UNIVERSALIS, 2019, 80 (01)
[26]   The variety generated by planar modular lattices [J].
Graetzer, G. ;
Quackenbush, R. W. .
ALGEBRA UNIVERSALIS, 2010, 63 (2-3) :187-201
[27]   Galois theory for a certain class of modular lattices [J].
Panin A.A. ;
Yakovlev A.V. .
Journal of Mathematical Sciences, 1999, 95 (2) :2126-2135
[28]   Frankl's Conjecture is True for Modular Lattices [J].
Tetsuya Abe ;
Bumpei Nakano .
Graphs and Combinatorics, 1998, 14 (4) :305-311
[29]   Two Notes on the Variety Generated by Planar Modular Lattices [J].
Gábor Czédli ;
Miklós Maróti .
Order, 2009, 26 :109-117
[30]   DIRECT SUMMANDS OF GOLDIE EXTENDING ELEMENTS IN MODULAR LATTICES [J].
Shroff, Rupal .
MATHEMATICA BOHEMICA, 2022, 147 (03) :359-368