A condition for modular lattices

被引:0
|
作者
Wang, Jun [1 ]
Wu, Jun [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
geometric lattice; modular lattice; chain; cutset;
D O I
10.1007/s00012-007-2064-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proves that a geometric lattice of rank n is a modular lattice if its every maximal chain contains a modular element of rank greater than 1 and less than n. This result is generalized to a more general lattices of finite rank.
引用
收藏
页码:491 / 496
页数:6
相关论文
共 50 条
  • [1] A condition for modular lattices
    Jun Wang
    Jun Wu
    Algebra universalis, 2007, 57 : 491 - 496
  • [2] Cutset Condition for Geometric Lattices
    Jun Wang
    Jun Wu
    Order, 2006, 23 : 333 - 338
  • [3] Cutset condition for geometric lattices
    Wang, Jun
    Wu, Jun
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2006, 23 (04): : 333 - 338
  • [4] Jacobi identities, modular lattices, and modular towers
    Chua, KS
    Solé, P
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (04) : 495 - 503
  • [5] Complete congruence lattices of two related modular lattices
    Gábor Czédli
    Algebra universalis, 2017, 78 : 251 - 289
  • [6] Complete congruence lattices of two related modular lattices
    Czedli, Gabor
    ALGEBRA UNIVERSALIS, 2017, 78 (03) : 251 - 289
  • [7] Involutive Residuated Lattices Based on Modular and Distributive Lattices
    Olson, Jeffrey S.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2014, 31 (03): : 373 - 389
  • [8] Lattices Generated by Modular Elements
    Shushpanov, M. P.
    RUSSIAN MATHEMATICS, 2015, 59 (12) : 73 - 75
  • [9] Ojective ideals in modular lattices
    Nimbhorkar, Shriram K.
    Shroff, Rupal C.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (01) : 161 - 178
  • [10] The category of linear modular lattices
    Albu, Toma
    Iosif, Mihai
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (01): : 33 - 46