On Certain Bounds for Edge Metric Dimension of Zero-Divisor Graphs Associated with Rings

被引:3
作者
Siddiqui, Hafiz Muahmmad Afzal [1 ]
Mujahid, Ammar [1 ]
Binyamin, Muhammad Ahsan [2 ]
Nadeem, Muhammad Faisal [1 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore Campus,Def Rd Lahore, Islamabad, Pakistan
[2] Govt Coll Univ Faisalabad, Dept Math, Faisalabad, Pakistan
关键词
Graphic methods;
D O I
10.1155/2021/5826722
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Given a finite commutative unital ring S having some non-zero elements x, y such that x.y=0, the elements of S that possess such property are called the zero divisors, denoted by ZS. We can associate a graph to S with the help of zero-divisor set ZS, denoted by ? S (called the zero-divisor graph), to study the algebraic properties of the ring S. In this research work, we aim to produce some general bounds for the edge version of metric dimension regarding zero-divisor graphs of S. To do so, we will discuss the zero-divisor graphs for the ring of integers DOUBLE-STRUCK CAPITAL Z(m) modulo m, some quotient polynomial rings, and the ring of Gaussian integers DOUBLE-STRUCK CAPITAL Z(m)i modulo m. Then, we prove the general result for the bounds of edge metric dimension of zero-divisor graphs in terms of maximum degree and diameter of ? S. In the end, we provide the commutative rings with the same metric dimension, edge metric dimension, and upper dimension.
引用
收藏
页数:7
相关论文
共 21 条
[1]   ZERO DIVISOR GRAPH FOR THE RING OF GAUSSIAN INTEGERS MODULO n [J].
Abu Osba, Emad ;
Al-Addasi, Salah ;
Abu Jaradeh, Nafiz .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (10) :3865-3877
[2]   A survey of antiregular graphs [J].
Ali, Akbar .
CONTRIBUTIONS TO MATHEMATICS, 2020, 1 :67-79
[3]  
Anderson D.F., 2001, ZERO DIVISOR GRAPH C
[4]   The total graph of a commutative ring [J].
Anderson, David F. ;
Badawi, Ayman .
JOURNAL OF ALGEBRA, 2008, 320 (07) :2706-2719
[5]   BECK COLORING OF A COMMUTATIVE RING [J].
ANDERSON, DD ;
NASEER, M .
JOURNAL OF ALGEBRA, 1993, 159 (02) :500-514
[6]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[7]   UNIT GRAPHS ASSOCIATED WITH RINGS [J].
Ashrafi, N. ;
Maimani, H. R. ;
Pournaki, M. R. ;
Yassemi, S. .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (08) :2851-2871
[8]  
Atiyah MF., 1994, Introduction to Commutative Algebra
[9]   THE JACOBSON GRAPH OF COMMUTATIVE RINGS [J].
Azimi, A. ;
Erfanian, A. ;
Farrokhi, M. D. G. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (03)
[10]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226