ON THE TRANSIENCE OF RANDOM INTERLACEMENTS

被引:25
作者
Rath, Balazs [1 ]
Sapozhnikov, Artem [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
Random interlacement; transience; random walk; resistance; intersection of random walks; capacity; PERCOLATION;
D O I
10.1214/ECP.v16-1637
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the interlacement Poisson point process on the space of doubly-infinite Z(d)-valued trajectories modulo time-shift, tending to infinity at positive and negative infinite times. The set of vertices and edges visited by at least one of these trajectories is the graph induced by the random interlacements at level u of Sznitman [9]. We prove that for any u > 0, almost surely, the random interlacement graph is transient.
引用
收藏
页码:379 / 391
页数:13
相关论文
共 11 条
[1]  
[Anonymous], 2001, PRINCIPLES RANDOM WA
[2]   SOME PROPERTIES OF RANDOM-WALK PATHS [J].
JAIN, NC ;
OREY, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 43 (03) :795-815
[3]  
Lawler G.F., 1991, Intersections of Random Walks
[4]  
Lyons R., 2011, Probability on Trees and Networks
[5]   A SIMPLE CRITERION FOR TRANSIENCE OF A REVERSIBLE MARKOV-CHAIN [J].
LYONS, T .
ANNALS OF PROBABILITY, 1983, 11 (02) :393-402
[6]  
Paley REAC, 1932, P CAMB PHILOS SOC, V28, P266
[7]  
PROCACCIA EB, 2011, ARXIV11011527
[8]  
RATH B, 2010, ARXIV10124711
[9]  
Sznitman AS, 2010, ANN MATH, V171, P2039
[10]   Interlacement percolation on transient weighted graphs [J].
Teixeira, A. .
ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 :1604-U1