Analysis of a Class of Lotka-Volterra Systems

被引:3
作者
Moza, G. [1 ]
Constantinescu, D. [2 ]
Efrem, R. [3 ]
Bucur, L. [2 ]
Constantinescu, R. [4 ]
机构
[1] Politehn Univ Timisoara, Dept Math, Timisoara, Romania
[2] Univ Craiova, Dept Appl Math, Craiova, Romania
[3] Univ Craiova, Dept Math, Craiova, Romania
[4] Univ Craiova, Dept Phys, Craiova, Romania
关键词
MODEL;
D O I
10.1007/s12346-022-00563-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A two-dimensional cubic Lotka-Volterra model with infinitesimal parameters is studied. Two different degenerate cases have been considered. The local behavior of the model has been studied in these cases. Sixteen different bifurcation diagrams with forty different regions describe the model's behavior in the two cases.
引用
收藏
页数:25
相关论文
共 50 条
[31]   The persistence of bipartite ecological communities with Lotka-Volterra dynamics [J].
Dopson, Matt ;
Emary, Clive .
JOURNAL OF MATHEMATICAL BIOLOGY, 2024, 89 (02)
[32]   Continuous Attractors of Lotka-Volterra Recurrent Neural Networks [J].
Zhang, Haixian ;
Yu, Jiali ;
Yi, Zhang .
ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT I, 2009, 5768 :287-+
[33]   Geometric approach for global asymptotic stability of three-dimensional Lotka-Volterra systems [J].
Lu, Guichen ;
Lu, Zhengyi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) :591-596
[34]   From Markov Jump Systems to Two Species Competitive Lotka-Volterra Equations with Diffusion [J].
Wang, Xue Qiang ;
Bo, Li Jun ;
Wang, Yong Jin .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (01) :157-170
[35]   Liouville theorems, universal estimates and periodic solutions for cooperative parabolic Lotka-Volterra systems [J].
Quittner, Pavol .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (04) :3524-3537
[36]   Uncertain impulsive Lotka-Volterra competitive systems: Robust stability of almost periodic solutions [J].
Stamov, Gani Tr. ;
Simeonov, Stanislav ;
Stamova, Ivanka M. .
CHAOS SOLITONS & FRACTALS, 2018, 110 :178-184
[37]   Temporally Discrete Three-species Lotka-Volterra Competitive Systems with Time Delays [J].
Bian, Qiankun ;
Zhang, Weiguo ;
Yu, Zhixian .
TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (01) :49-75
[38]   On a fully parabolic chemotaxis system with Lotka-Volterra competitive kinetics [J].
Li, Xie ;
Wang, Yilong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 471 (1-2) :584-598
[39]   The diffusive Lotka-Volterra predator-prey system with delay [J].
Al Noufaey, K. S. ;
Marchant, T. R. ;
Edwards, M. P. .
MATHEMATICAL BIOSCIENCES, 2015, 270 :30-40
[40]   On β-extinction and Stability of a Stochastic Lotka-Volterra System with Infinite Delay [J].
Zhao, Shu-fen .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (04) :1045-1059