Analysis of a Class of Lotka-Volterra Systems

被引:2
|
作者
Moza, G. [1 ]
Constantinescu, D. [2 ]
Efrem, R. [3 ]
Bucur, L. [2 ]
Constantinescu, R. [4 ]
机构
[1] Politehn Univ Timisoara, Dept Math, Timisoara, Romania
[2] Univ Craiova, Dept Appl Math, Craiova, Romania
[3] Univ Craiova, Dept Math, Craiova, Romania
[4] Univ Craiova, Dept Phys, Craiova, Romania
关键词
MODEL;
D O I
10.1007/s12346-022-00563-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A two-dimensional cubic Lotka-Volterra model with infinitesimal parameters is studied. Two different degenerate cases have been considered. The local behavior of the model has been studied in these cases. Sixteen different bifurcation diagrams with forty different regions describe the model's behavior in the two cases.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Lotka-Volterra Systems with Periodic Orbits
    Kobayashi, Manami
    Suzuki, Takashi
    Yamada, Yoshio
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2019, 62 (01): : 129 - 155
  • [22] Integrable deformations of Lotka-Volterra systems
    Ballesteros, Angel
    Blasco, Alfonso
    Musso, Fabio
    PHYSICS LETTERS A, 2011, 375 (38) : 3370 - 3374
  • [23] Integrability and linearizability of the Lotka-Volterra systems
    Liu, CJ
    Chen, GT
    Li, CZ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (02) : 301 - 320
  • [24] Stability of neutral Lotka-Volterra systems
    Yi, Z
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (02) : 391 - 402
  • [25] Chaos in perturbed Lotka-Volterra systems
    Christie, JR
    Gopalsamy, K
    Li, JB
    ANZIAM JOURNAL, 2001, 42 : 399 - 412
  • [26] A Counterexample to a Result on Lotka-Volterra Systems
    Llibre, Jaume
    ACTA APPLICANDAE MATHEMATICAE, 2016, 142 (01) : 123 - 125
  • [27] Lotka-Volterra systems integrable in quadratures
    Bogoyavlenskij, Oleg
    Itoh, Yoshiaki
    Yukawa, Tetsuyuki
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (05)
  • [28] DYNAMICS OF LOTKA-VOLTERRA SYSTEMS WITH EXPLOITATION
    DERRICK, W
    METZGAR, L
    JOURNAL OF THEORETICAL BIOLOGY, 1991, 153 (04) : 455 - 468
  • [29] On global stabilization of Lotka-Volterra systems
    Vega, VM
    Aeyels, D
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 419 - 424
  • [30] Permanence of Stochastic Lotka-Volterra Systems
    Liu, Meng
    Fan, Meng
    JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (02) : 425 - 452