Analysis of a Class of Lotka-Volterra Systems

被引:3
作者
Moza, G. [1 ]
Constantinescu, D. [2 ]
Efrem, R. [3 ]
Bucur, L. [2 ]
Constantinescu, R. [4 ]
机构
[1] Politehn Univ Timisoara, Dept Math, Timisoara, Romania
[2] Univ Craiova, Dept Appl Math, Craiova, Romania
[3] Univ Craiova, Dept Math, Craiova, Romania
[4] Univ Craiova, Dept Phys, Craiova, Romania
关键词
MODEL;
D O I
10.1007/s12346-022-00563-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A two-dimensional cubic Lotka-Volterra model with infinitesimal parameters is studied. Two different degenerate cases have been considered. The local behavior of the model has been studied in these cases. Sixteen different bifurcation diagrams with forty different regions describe the model's behavior in the two cases.
引用
收藏
页数:25
相关论文
共 50 条
[1]   Analysis of autonomous Lotka-Volterra competition systems with random perturbation [J].
Jiang, Daqing ;
Ji, Chunyan ;
Li, Xiaoyue ;
O'Regan, Donal .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (02) :582-595
[2]   Stochastic Lotka-Volterra systems with Levy noise [J].
Liu, Meng ;
Wang, Ke .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (02) :750-763
[3]   Analysis on stochastic delay Lotka-Volterra systems driven by Levy noise [J].
Liu, Qun ;
Chen, Qingmei ;
Liu, Zhenhai .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 235 :261-271
[4]   TRAVELING WAVES FOR NONLOCAL LOTKA-VOLTERRA COMPETITION SYSTEMS [J].
Han, Bang-Sheng ;
Wang, Zhi-Cheng ;
Du, Zengji .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (05) :1959-1983
[5]   The LaSalle's invariant sets for a class of Lotka-Volterra prey-predator chain systems [J].
Yang, Ming ;
Yang, Jing ;
Gao, Shuhong ;
Lu, Zhengyi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (01) :985-998
[6]   QUALITATIVE ANALYSIS OF A LOTKA-VOLTERRA COMPETITION SYSTEM WITH ADVECTION [J].
Wang, Qi ;
Gai, Chunyi ;
Yan, Jingda .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (03) :1239-1284
[7]   On Stability and Trajectory Boundedness of Lotka-Volterra Systems With Polytopic Uncertainty [J].
Badri, Vahid ;
Yazdanpanah, M. J. ;
Tavazoei, Mohammad Saleh .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (12) :6423-6429
[8]   On the multi-dimensional advective Lotka-Volterra competition systems [J].
Wang, Qi ;
Zhang, Lu .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 :329-349
[9]   On hybrid competitive Lotka-Volterra ecosystems [J].
Zhu, C. ;
Yin, G. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E1370-E1379
[10]   Permanence in Multispecies Nonautonomous Lotka-Volterra Competitive Systems with Delays and Impulses [J].
Feng, Xiaomei ;
Zhang, Fengqin ;
Wang, Kai ;
Li, Xiaoxia .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012