Analysis and Finite Element Approximation of a Coupled, Continuum Pipe-Flow/Darcy Model for Flow in Porous Media with Embedded Conduits

被引:21
作者
Cao, Yanzhao [3 ]
Gunzburger, Max [2 ]
Hua, Fei [1 ]
Wang, Xiaoming [1 ]
机构
[1] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[2] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
[3] Auburn Univ, Dept Math & Stat, Auburn, AL 36830 USA
基金
美国国家科学基金会;
关键词
finite element; pipe flow; porous media flow; STOKES-DARCY MODEL; FLUID-FLOW;
D O I
10.1002/num.20579
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the continuum Darcy/pipe flow model for flows in a porous matrix containing embedded conduits; such coupled flows are present in, e.g., karst aquifers. The mathematical well-posedness of the coupled problem as well as convergence rates of finite element approximation are established in the two-dimensional case. Computational results are also provided. (C) 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1242-1252, 2011
引用
收藏
页码:1242 / 1252
页数:11
相关论文
共 28 条
[1]  
ADAMS RA, 2003, FOURNIER SOBOLEV SPA
[2]  
[Anonymous], 2007, MATH THEORY FINITE E
[3]  
[Anonymous], 2005, MODFLOW 2005 US GEOL, DOI DOI 10.3133/TM6A16
[4]  
Barenblatt G. I., 1960, Journal of Applied Mathematics and Mechanics, V24, P1286, DOI DOI 10.1016/0021-8928(60)90107-6
[5]   Modeling of karst aquifer genesis: Influence of exchange flow [J].
Bauer, S ;
Liedl, R ;
Sauter, M .
WATER RESOURCES RESEARCH, 2003, 39 (10) :SBH61-SBH612
[6]  
Bauer S., 2000, IAHS Publ, V265, P10
[7]  
BEAR J., 1987, MODELING GROUNDWATER
[8]   Hydraulic boundary conditions as a controlling factor in karst genesis: A numerical modeling study on artesian conduit development in gypsum [J].
Birk, S ;
Liedl, R ;
Sauter, M ;
Teutsch, G .
WATER RESOURCES RESEARCH, 2003, 39 (01)
[9]  
Bobok E., 1993, Fluid mechanics for petroleum engineers
[10]  
Cao Y., 1988, KARST HYDROGEOLOGY K