Packing of graphic n-tuples

被引:23
|
作者
Busch, Arthur H. [1 ]
Ferrara, Michael J. [2 ]
Hartke, Stephen G. [3 ]
Jacobson, Michael S. [2 ]
Kaul, Hemanshu [4 ]
West, Douglas B. [5 ]
机构
[1] Univ Dayton, Dayton, OH 45469 USA
[2] Univ Colorado, Denver, CO 80202 USA
[3] Univ Nebraska, Lincoln, NE USA
[4] IIT, Chicago, IL 60616 USA
[5] Univ Illinois, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
degree sequence; graphic sequence; graph packing; k-factor; 1-factor;
D O I
10.1002/jgt.20598
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An n-tuple p (not necessarily monotone) is graphic if there is a simple graph G with vertex set {v1, ..., vn} in which the degree of vi is the ith entry of p. Graphic n-tuples (d?(1)1,..., d?(1)n) and (d?(2)1,..., d?(2)n) pack if there are edge-disjoint n-vertex graphs G1 and G2 such that d?G?1(vi) = d?(1)i and d?G?2(vi) = d?(2)i for all i. We prove that graphic n-tuples p1 and p2 pack if , where ?and ddenote the largest and smallest entries in p1 + p2 (strict inequality when d = 1); also, the bound is sharp.
引用
收藏
页码:29 / 39
页数:11
相关论文
共 50 条