On the Domain of Starting Points of Newton's Method Under Center Lipschitz Conditions

被引:4
作者
Ezquerro, J. A. [1 ]
Hernandez-Veron, M. A. [1 ]
机构
[1] Univ La Rioja, Dept Math & Computat, C Luis de Ulloa S-N, Logrono 26004, Spain
关键词
Nonlinear operator; Newton's method; semilocal convergence; region of accessibility; integral equation; nonlinear system; SEMILOCAL CONVERGENCE; THEOREM;
D O I
10.1007/s00009-015-0596-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When the semilocal convergence of Newton's method is studied in Banach spaces under center Lipschitz conditions, it is usual to choose the point where the Lipschitz condition is centered as the initial point for Newton's method. In this work, we improve this choice looking for a domain of initial points (a convergence domain).
引用
收藏
页码:2287 / 2300
页数:14
相关论文
共 50 条
  • [11] Majorizing sequences for Newton's method under centred conditions for the derivative
    Argyros, I. K.
    Gonzalez, D.
    Magrenan, A. A.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (12) : 2568 - 2583
  • [12] A semilocal convergence result for Newton's method under generalized conditions of Kantorovich
    Ezquerro, J. A.
    Gonzalez, D.
    Hernandez-Veron, M. A.
    JOURNAL OF COMPLEXITY, 2014, 30 (03) : 309 - 324
  • [13] How to Increase the Accessibility of Newton's Method for Operators With Center-Lipschitz Continuous First Derivative
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    Magrenan, A. A.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (03) : 350 - 363
  • [14] Weaker conditions for the convergence of Newton's method
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF COMPLEXITY, 2012, 28 (03) : 364 - 387
  • [15] LOCAL CONVERGENCE OF INEXACT NEWTON-LIKE METHOD UNDER WEAK LIPSCHITZ CONDITIONS
    Ioannis K.ARGYROS
    Yeol Je CHO
    Santhosh GEORGE
    肖义彬
    ActaMathematicaScientia, 2020, 40 (01) : 199 - 210
  • [16] Local Convergence of Inexact Newton-Like Method under Weak Lipschitz Conditions
    Argyros, Ioannis K.
    Cho, Yeol Je
    George, Santhosh
    Xiao, Yibin
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (01) : 199 - 210
  • [17] Local Convergence of Inexact Newton-Like Method under Weak Lipschitz Conditions
    Ioannis K. Argyros
    Yeol Je Cho
    Santhosh George
    Yibin Xiao
    Acta Mathematica Scientia, 2020, 40 : 199 - 210
  • [18] A GENERAL SEMILOCAL CONVERGENCE RESULT FOR NEWTON'S METHOD UNDER CENTERED CONDITIONS FOR THE SECOND DERIVATIVE
    Antonio Ezquerro, Jose
    Gonzalez, Daniel
    Angel Hernandez, Miguel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (01): : 149 - 167
  • [19] Extending the applicability of the Gauss-Newton method under average Lipschitz-type conditions
    Argyros, Ioannis K.
    Hilout, Said
    NUMERICAL ALGORITHMS, 2011, 58 (01) : 23 - 52
  • [20] Extending the applicability of the Gauss–Newton method under average Lipschitz–type conditions
    Ioannis K. Argyros
    Saïd Hilout
    Numerical Algorithms, 2011, 58 : 23 - 52