Automatic aortic root segmentation in CTA whole-body dataset

被引:2
作者
Gao, Xinpei [1 ]
Kitslaar, Pieter H. [1 ]
Scholte, Arthur J. H. A. [2 ]
Lelieveldt, Boudewijn P. F. [1 ]
Dijkstra, Jouke [1 ]
Reiber, Johan H. C. [1 ]
机构
[1] Leiden Univ, Med Ctr, Dept Radiol, Div Image Proc, Leiden, Netherlands
[2] Leiden Univ, Med Ctr, Dept Cardiol, Leiden, Netherlands
来源
MEDICAL IMAGING 2016: COMPUTER-AIDED DIAGNOSIS | 2015年 / 9785卷
关键词
aortic root; segmentation; atlas; model-fitting; ANGIOGRAPHY;
D O I
10.1117/12.2216734
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Trans-catheter aortic valve replacement (TAVR) is an evolving technique for patients with serious aortic stenosis disease. Typically, in this application a CTA data set is obtained of the patient's arterial system from the subclavian artery to the femoral arteries, to evaluate the quality of the vascular access route and analyze the aortic root to determine if and which prosthesis should be used. In this paper, we concentrate on the automated segmentation of the aortic root. The purpose of this study was to automatically segment the aortic root in computed tomography angiography (CTA) datasets to support TAVR procedures. The method in this study includes 4 major steps. First, the patient's cardiac CTA image was resampled to reduce the computation time. Next, the cardiac CTA image was segmented using an atlas-based approach. The most similar atlas was selected from a total of 8 atlases based on its image similarity to the input CTA image. Third, the aortic root segmentation from the previous step was transferred to the patient's whole-body CTA image by affine registration and refined in the fourth step using a deformable subdivision surface model fitting procedure based on image intensity. The pipeline was applied to 20 patients. The ground truth was created by an analyst who semi-automatically corrected the contours of the automatic method, where necessary. The average Dice similarity index between the segmentations of the automatic method and the ground truth was found to be 0.965 +/- 0.024. In conclusion, the current results are very promising.
引用
收藏
页数:7
相关论文
共 17 条
[1]   Open issues in transcatheter aortic valve implantation. Part 1: patient selection and treatment strategy for transcatheter aortic valve implantation [J].
Bax, Jeroen J. ;
Delgado, Victoria ;
Bapat, Vinayak ;
Baumgartner, Helmut ;
Collet, Jean P. ;
Erbel, Raimund ;
Hamm, Christian ;
Kappetein, Arie P. ;
Leipsic, Jonathon ;
Leon, Martin B. ;
MacCarthy, Philip ;
Piazza, Nicolo ;
Pibarot, Philippe ;
Roberts, William C. ;
Rodes-Cabau, Josep ;
Serruys, Patrick W. ;
Thomas, Martyn ;
Vahanian, Alec ;
Webb, John ;
Luis Zamorano, Jose ;
Windecker, Stephan .
EUROPEAN HEART JOURNAL, 2014, 35 (38) :2627-+
[2]   Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography in the non-invasive evaluation of significant coronary artery disease [J].
de Graaf, Fleur R. ;
Schuijf, Joanne D. ;
van Velzen, Joella E. ;
Kroft, Lucia J. ;
de Roos, Albert ;
Reiber, Johannes H. C. ;
Boersma, Eric ;
Schalij, Martin J. ;
Spano, Fabrizio ;
Jukema, J. Wouter ;
van der Wall, Ernst E. ;
Bax, Jeroen J. .
EUROPEAN HEART JOURNAL, 2010, 31 (15) :1908-1915
[3]   Segmentation of the heart and great vessels in CT images using a model-based adaptation framework [J].
Ecabert, Olivier ;
Peters, Jochen ;
Walker, Matthew J. ;
Ivanc, Thomas ;
Lorenz, Cristian ;
von Berg, Jens ;
Lessick, Jonathan ;
Vembar, Mani ;
Weese, Juergen .
MEDICAL IMAGE ANALYSIS, 2011, 15 (06) :863-876
[4]   Automatic segmentation of the aortic root in CT angiography of candidate patients for transcatheter aortic valve implantation [J].
Elattar, M. A. ;
Wiegerinck, E. M. ;
Planken, R. N. ;
Vanbavel, E. ;
van Assen, H. C. ;
Baan, J., Jr. ;
Marquering, H. A. .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2014, 52 (07) :611-618
[5]   Multi-atlas segmentation of biomedical images: A survey [J].
Eugenio Iglesias, Juan ;
Sabuncu, Mert R. .
MEDICAL IMAGE ANALYSIS, 2015, 24 (01) :205-219
[6]  
Gao XP, 2014, COMPUT CARDIOL CONF, V41, P697
[7]   Complete valvular heart apparatus model from 4D cardiac CT [J].
Grbic, Sasa ;
Ionasec, Razvan ;
Vitanovski, Dime ;
Voigt, Ingmar ;
Wang, Yang ;
Georgescu, Bogdan ;
Navab, Nassir ;
Comaniciu, Dorin .
MEDICAL IMAGE ANALYSIS, 2012, 16 (05) :1003-1014
[8]   Evaluation of a multi-atlas based method for segmentation of cardiac CTA data: a large-scale, multicenter, and multivendor study [J].
Kirisli, H. A. ;
Schaap, M. ;
Klein, S. ;
Papadopoulou, S. L. ;
Bonardi, M. ;
Chen, C. H. ;
Weustink, A. C. ;
Mollet, N. R. ;
Vonken, E. J. ;
van der Geest, R. J. ;
van Walsum, T. ;
Niessen, W. J. .
MEDICAL PHYSICS, 2010, 37 (12) :6279-6291
[9]  
Kitslaar P. H., 2015, P SOC PHOTO-OPT INS, V9413
[10]   elastix: A Toolbox for Intensity-Based Medical Image Registration [J].
Klein, Stefan ;
Staring, Marius ;
Murphy, Keelin ;
Viergever, Max A. ;
Pluim, Josien P. W. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (01) :196-205