Mathematical Modeling of Turbulent Layer Penetration in a Stratified Fluid

被引:1
作者
Vasil'ev, O. F. [1 ]
Ovchinnikova, T. E. [1 ]
Chernykh, G. G. [2 ]
机构
[1] Russian Acad Sci, Inst Water & Ecol Problems, Siberian Branch, Novosibirsk 630090, Russia
[2] Russian Acad Sci, Inst Computat Technol, Siberian Branch, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Velocity; -; Turbulence;
D O I
10.1134/S1028335812040088
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The characteristic example of flow, vertical turbulent exchange in which plays the key role, is the flow arising in the case of the penetration of a fluid turbulized layer into a linearly stratified medium under the action of wind on the reservoir surface. Nevertheless, analysis of publications in the field of the mathematical modeling of the penetration process shows that the investigations ignored important features of the flow under consideration. With the goal of more detailed description of the vertical turbulent exchange, we involved the differential equation of transport for the dispersion of fluctuations of the vertical velocity component. A similar approach seems to be very efficient for modeling a wide class of turbulent flows in stably stratified fluids because the turbulent fluctuations of the vertical velocity component in such flows are subject to the action of the buoyancy force to a greater degree in comparison with horizontal components.
引用
收藏
页码:166 / 170
页数:5
相关论文
共 50 条
[31]   Modeling turbulent boundary layer noise in the presence of sound absorbing devices [J].
Maslov, V. P. ;
Mironov, A. K. ;
Pichkov, K. N. ;
Sekundov, A. N. ;
Cheprasov, S. A. .
FLUID DYNAMICS, 2015, 50 (01) :40-49
[32]   Large-scale motions in a turbulent natural convection boundary layer immersed in a stably stratified environment [J].
Maryada, K. R. ;
Armfield, S. W. ;
Dhopade, P. ;
Norris, S. E. .
JOURNAL OF FLUID MECHANICS, 2023, 967
[33]   Numerical modeling of surface wave motion with a bottom turbulent boundary layer [J].
Jamali, Mirmosadegh .
Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, Vol 3, 2005, :923-926
[34]   Modeling turbulent boundary layer noise in the presence of sound absorbing devices [J].
V. P. Maslov ;
A. K. Mironov ;
K. N. Pichkov ;
A. N. Sekundov ;
S. A. Cheprasov .
Fluid Dynamics, 2015, 50 :40-49
[35]   Penetration and overshooting in turbulent compressible convection [J].
Brummell, NH ;
Clune, TL ;
Toomre, J .
ASTROPHYSICAL JOURNAL, 2002, 570 (02) :825-854
[36]   Modeling of wind turbine wakes under thermally-stratified atmospheric boundary layer [J].
El-Askary, W. A. ;
Sakr, I. M. ;
AbdelSalam, Ali M. ;
Abuhegazy, M. R. .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2017, 160 :1-15
[37]   Modeling subgrid-scale heat fluxes in the neutral and stratified atmospheric boundary layer [J].
Chamecki, Marcelo .
JOURNAL OF TURBULENCE, 2010, 11 (13) :1-16
[38]   The Evolution and Arrest of a Turbulent Stratified Oceanic Bottom Boundary Layer over a Slope: Upslope Regime and PV Dynamics [J].
Ruan, Xiaozhou ;
Thompson, Andrew F. ;
Taylor, John R. .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2021, 51 (04) :1077-1089
[39]   A Reinterpretation of Phenomenological Modeling Approaches for Lagrangian Particles Settling in a Turbulent Boundary Layer [J].
Grace, Andrew P. ;
Richter, David H. ;
Bragg, Andrew D. .
BOUNDARY-LAYER METEOROLOGY, 2024, 190 (04)
[40]   Effect of the Prandtl number on a stratified turbulent wake [J].
de Stadler, Matthew B. ;
Sarkar, Sutanu ;
Brucker, Kyle A. .
PHYSICS OF FLUIDS, 2010, 22 (09)