We combined biochemical and topographical patterning to achieve motor-driven microtubule gliding on top of microfabricated pillar arrays with limited and controllable surface interactions of gliding microtubules. Kinesins immobilized on pillar heads pushed microtubules from the top of one micropillar to the next bridging up to 20 mu m deep gaps filled with buffer solution. Distances of more than 10 mu m were by-passed, and microtubule buckling was occasionally observed. The velocity distributions of microtubules gliding on poly(dimethylsiloxane) (PDMS) pillars, on flat PDMS, and on glass were found to be different, most likely due to topological and/or chemical differences between the substrates. We also used pillar arrays to suspend cross-linked microtubule networks, whose structural characteristics were governed by the topographical characteristics of the pillar pattern. These experiments open new possibilities to study the dynamics and the self-organization of motor/microtubule networks in defined topologically structured environments.