The effects of point-defects on the dynamic scaling of growing surfaces

被引:0
作者
Zhang Lei-Ming [1 ]
Xia Hui [2 ]
机构
[1] China Univ Min & Technol, Xuhai Coll, Xuzhou 221008, Peoples R China
[2] China Univ Min & Technol, Dept Phys, Xuzhou 221008, Peoples R China
关键词
surface growth; dynamic renormalization-group approach; point-defects; RENORMALIZATION-GROUP ANALYSIS; MODE-COUPLING THEORY; DIRECTED POLYMERS;
D O I
10.7498/aps.61.086801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamic scaling properties of growing surfaces with point-defects are studied by applying the dynamic renormalization-group approach to the noisy Kuramoto-Sivashinsky equation with an additional term of point-defects potential. From the roughness and the dynamic exponents alpha and z obtained here it follows that point-defects tend to roughen the growing surface and shorten its dynamic relaxation process to a steady-growth state.
引用
收藏
页数:5
相关论文
共 20 条
[1]  
Barabsi A-L., 1995, Fractal Concepts in Surface Growth, DOI [10.1017/CBO9780511599798, DOI 10.1017/CBO9780511599798]
[2]   Changing growth conditions during surface growth [J].
Chou, Yen-Liang ;
Pleimling, Michel ;
Zia, R. K. P. .
PHYSICAL REVIEW E, 2009, 80 (06)
[3]   Upper critical dimension, dynamic exponent, and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation [J].
Colaiori, F ;
Moore, MA .
PHYSICAL REVIEW LETTERS, 2001, 86 (18) :3946-3949
[4]   RENORMALIZATION-GROUP ANALYSIS OF A NOISY KURAMOTO-SIVASHINSKY EQUATION [J].
CUERNO, R ;
LAURITSEN, KB .
PHYSICAL REVIEW E, 1995, 52 (05) :4853-4859
[5]   DYNAMIC SCALING OF ION-SPUTTERED SURFACES [J].
CUERNO, R ;
BARABASI, AL .
PHYSICAL REVIEW LETTERS, 1995, 74 (23) :4746-4749
[6]   GENERALIZATIONS OF THE KARDAR-PARISI-ZHANG EQUATION [J].
DOHERTY, JP ;
MOORE, MA ;
KIM, JM ;
BRAY, AJ .
PHYSICAL REVIEW LETTERS, 1994, 72 (13) :2041-2044
[7]   SCALING OF THE ACTIVE ZONE IN THE EDEN PROCESS ON PERCOLATION NETWORKS AND THE BALLISTIC DEPOSITION MODEL [J].
FAMILY, F ;
VICSEK, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02) :L75-L81
[8]  
Family F, 1991, DYNAMICS FRACTAL FUR
[9]   LARGE-DISTANCE AND LONG-TIME PROPERTIES OF A RANDOMLY STIRRED FLUID [J].
FORSTER, D ;
NELSON, DR ;
STEPHEN, MJ .
PHYSICAL REVIEW A, 1977, 16 (02) :732-749
[10]   Langevin dynamics of the Coulomb frustrated ferromagnet: A mode-coupling analysis [J].
Grousson, M ;
Krakoviack, V ;
Tarjus, G ;
Viot, P .
PHYSICAL REVIEW E, 2002, 66 (02) :1-026126