State-of-Charge Estimation and State-of-Health Prediction of a Li-Ion Degraded Battery Based on an EKF Combined With a Per-Unit System

被引:207
作者
Kim, Jonghoon [1 ]
Cho, B. H. [1 ]
机构
[1] Seoul Natl Univ, Sch Elect Engn & Comp Sci, Seoul 151744, South Korea
关键词
Extended Kalman filter (EKF); per-unit (p.u.) system; state of charge (SOC); state of health (SOH); OPEN-CIRCUIT-VOLTAGE; LEAD-ACID-BATTERIES; MANAGEMENT-SYSTEMS; PARAMETER-ESTIMATION; MODEL; PACKS; OBSERVER; LIFETIME; FADE;
D O I
10.1109/TVT.2011.2168987
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes the application of an extended Kalman filter (EKF) combined with a per-unit (p.u.) system to the identification of suitable battery model parameters for the high-accuracy state-of-charge (SOC) estimation and state-of-health (SOH) prediction of a Li-Ion degraded battery. Variances in electrochemical characteristics among Li-Ion batteries caused by aging differences result in erroneous SOC estimation and SOH prediction when using the existing EKF algorithm. To apply the battery model parameters varied by the aging effect, based on the p.u. system, the absolute values of the parameters in the equivalent circuit model in addition to the discharging/charging voltage and current are converted into dimensionless values relative to a set of base value. The converted values are applied to dynamic and measurement models in the EKF algorithm. In particular, based on two methods such as direct current internal resistance measurement and the statistical analysis of voltage pattern, each diffusion resistance (R-Diff) can be measured and used for offline and online SOC estimations, respectively. All SOC estimates are within +/- 5% of the values estimated by ampere-hour counting. Moreover, it is shown that R-Diff is more sensitive than other model parameters under identical experimental conditions and, hence, implementable for SOH prediction.
引用
收藏
页码:4249 / 4260
页数:12
相关论文
共 50 条
  • [1] Combined Estimation of State-of-Charge and State-of-Health of Li-ion Battery Cells Using SMO on Electrochemical Model
    Dey, Satadru
    Ayalew, Beshah
    Pisu, Pierluigi
    2014 13TH INTERNATIONAL WORKSHOP ON VARIABLE STRUCTURE SYSTEMS (VSS), 2014,
  • [2] Robust and adaptive online State-of-Health and State-of-Charge estimation of Li-ion battery cell
    Michel, Paul-Henri
    Heiries, Vincent
    2023 IEEE VEHICLE POWER AND PROPULSION CONFERENCE, VPPC, 2023,
  • [3] Estimation of State-of-Charge and State-of-Health for Lithium-Ion Degraded Battery Considering Side Reactions
    Gao, Yizhao
    Zhang, Xi
    Yang, Jun
    Guo, Bangjun
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (16) : A4018 - A4026
  • [4] A STRATEGY FOR ESTIMATING STATE-OF-CHARGE AND STATE-OF-HEALTH OF LI-ION BATTERIES IN ELECTRIC AND HYBRID ELECTRIC VEHICLES
    Zhao, Xiaowei
    Zhang, Guoyu
    Yang, Lin
    INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 6, PTS A AND B, 2013, : 453 - 460
  • [5] Estimation of Model Parameters and State-of-Charge for Battery Management System of Li-ion Battery in EVs
    Sangwan, Venu
    Kumar, Rajesh
    Rathore, Akshay K.
    2017 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE (ITEC-INDIA), 2017,
  • [6] State-of-charge and state-of-health estimation for lithium-ion batteries based on dynamic impedance technique
    Hung, Min-Hsuan
    Lin, Chang-Hua
    Lee, Liang-Cheng
    Wang, Chien-Ming
    JOURNAL OF POWER SOURCES, 2014, 268 : 861 - 873
  • [7] State-of-Charge Estimation with State-of-Health Calibration for Lithium-Ion Batteries
    Wu, Tsung-Hsi
    Moo, Chin-Sien
    ENERGIES, 2017, 10 (07):
  • [8] State-of-Charge Estimation for Li-Ion Power Batteries Based on a Tuning Free Observer
    Tang, Xiaopeng
    Liu, Boyang
    Gao, Furong
    Lv, Zhou
    ENERGIES, 2016, 9 (09)
  • [9] Design of State of Charge and Health Estimation for Li-ion Battery Management System
    Kim, Minjoon
    So, Jaehyuk
    2022 19TH INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2022, : 322 - 323
  • [10] Li-ion Battery Pack State-of-Charge Estimation Disturbed by Colored Noises
    Cheng, Ximing
    Wang, Shouqun
    Yao, Liguang
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105