A Triple-Gradient Host for Long Cycling Lithium Metal Anodes at Ultrahigh Current Density

被引:31
作者
Le, TrungHieu [1 ]
Liang, Qinghua [2 ]
Chen, Ming [1 ]
Yang, Ciqing [1 ]
Yu, Zhihao [1 ]
Cheng, Jie [3 ]
Kang, Feiyu [4 ]
Yang, Ying [1 ]
机构
[1] Tsinghua Univ, State Key Lab Control & Simulat Power Syst & Gene, Beijing 100084, Peoples R China
[2] Univ Melbourne, Dept Chem Engn, Parkville, Vic 3010, Australia
[3] Zhejiang Yuyuan Energy Storage Technol Co Ltd, Huzhou 313100, Peoples R China
[4] Tsinghua Univ, Dept Mat Sci & Engn, Adv Mat Lab, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
carbon nanofibers; gradient design; lithium metal anodes; ultrahigh current density; HIGH-CAPACITY; ZNO; OXIDE; FERROMAGNETISM; NANOPARTICLES; DEPOSITION; BATTERIES; BEHAVIOR; LAYER;
D O I
10.1002/smll.202001992
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The viable Li metal anodes (LMAs) are still hampered by the safety concerns resulting from fast Li dendrite growth and huge volume expansion during cycling. Herein, carbon nanofiber matrix anchored with MgZnO nanoparticles (MgZnO/CNF) is developed as a flexible triple-gradient host for long cycling LMAs. The superlithiophilic MgZnO nanoparticles significantly increase the wettability of CNF for fast and homogeneous infusion with molten Li. The in-built potential and lithiophilic gradients constructed after an in situ lithiation of MgZnO and CNF enable nearly zero Li nucleation overpotential and homogeneous deposition of lithium at different scales. As such, the LMAs based on MgZnO/CNF achieve long cycling life and small overpotential even at a record-high current density of 50 mA cm(-2)and a high areal capacity of 10 mAh cm(-2). A full cell paring with this designed LMA and LiFePO(4)exhibits a capacity retention up to 82% after 600 cycles at a high rate of 5 C. A Li-ion capacitor also shows an impressive capacity retention of 84% at 5 A g(-1)after 10 000 cycles. Such a Li@MgZnO/CNF anode is a promising candidate for Li-metal energy storage systems, especially working under ultrahigh current density.
引用
收藏
页数:9
相关论文
共 63 条
[1]   In situ study of dendritic growth in lithium/PEO-salt/lithium cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Baudry, P ;
Lascaud, S .
ELECTROCHIMICA ACTA, 1998, 43 (10-11) :1569-1574
[2]  
Brissot C., 2001, Studies in Surface Science and Catalysis, V132, P947, DOI 10.1016/S0167-2991(01)82243-6
[3]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[4]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[5]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[6]   Effects of temperature on the ferromagnetism of Mn-doped ZnO nanoparticles and Mn-related Raman vibration [J].
Cong, CJ ;
Liao, L ;
Liu, QY ;
Li, JC ;
Zhang, KL .
NANOTECHNOLOGY, 2006, 17 (05) :1520-1526
[7]   Microscale Lithium Metal Stored inside Cellular Graphene Scaffold toward Advanced Metallic Lithium Anodes [J].
Deng, Wei ;
Zhou, Xufeng ;
Fang, Qile ;
Liu, Zhaoping .
ADVANCED ENERGY MATERIALS, 2018, 8 (12)
[8]   Stable Lithium Electrodeposition at Ultra-High Current Densities Enabled by 3D PMF/Li Composite Anode [J].
Fan, Lei ;
Zhuang, Houlong L. ;
Zhang, Weidong ;
Fu, Yao ;
Liao, Zhihao ;
Lu, Yingying .
ADVANCED ENERGY MATERIALS, 2018, 8 (15)
[9]   Structural and optical properties of ZnO and manganese-doped ZnO [J].
Gallegos, Maria V. ;
Peluso, Miguel A. ;
Thomas, Horacio ;
Damonte, Laura C. ;
Sambeth, Jorge E. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 689 :416-424
[10]   Mixed Ion and Electron-Conducting Scaffolds for High-Rate Lithium Metal Anodes [J].
Guo, Wenqing ;
Liu, Shan ;
Guan, Xuze ;
Zhang, Xinyue ;
Liu, Xinjiang ;
Luo, Jiayan .
ADVANCED ENERGY MATERIALS, 2019, 9 (20)