Reflection theorem for divisor class groups of relative quadratic function fields

被引:1
作者
Lee, Yoonjin [1 ]
机构
[1] Ewha Womans Univ, Dept Math, Seoul 120750, South Korea
基金
加拿大自然科学与工程研究理事会;
关键词
reflection theorem; divisor class group; rank of divisor class group; ideal class group; quadratic function field;
D O I
10.1016/j.jnt.2007.08.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present the reflection theorem for divisor class groups of relative quadratic function fields. Let K be a global function field with constant field F-q. Let L-1 be a quadratic geometric extension of K and let L-2 be its twist by the quadratic constant field extension of K. We show that for every odd integer in that divides q + 1 the divisor class groups of L-1 and L-2 have the same m-rank. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2127 / 2137
页数:11
相关论文
共 5 条
[1]   Cohen-Lenstra heuristics and the Spiegelungssatz; function fields [J].
Lee, YJ .
JOURNAL OF NUMBER THEORY, 2004, 106 (02) :187-199
[2]  
LONG RL, 1977, ALGEBRAIC NUMBER THE
[3]   S-UNITS AND S-CLASS GROUP IN ALGEBRAIC FUNCTION FIELDS [J].
ROSEN, M .
JOURNAL OF ALGEBRA, 1973, 26 (01) :98-108
[4]  
Rosen M., 2002, NUMBER THEORY FUNCTI
[5]  
Rosen M., 1987, EXPO MATH, V5, P365