Notes on the K3 Surface and the Mathieu Group M24

被引:176
作者
Eguchi, Tohru [1 ]
Ooguri, Hirosi [2 ]
Tachikawa, Yuji [3 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[2] CALTECH, Pasadena, CA 91125 USA
[3] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
关键词
K3; surface; elliptic genus; Mathieu groups; SUPERCONFORMAL ALGEBRAS; FINITE-GROUPS; AUTOMORPHISMS; MANIFOLDS;
D O I
10.1080/10586458.2011.544585
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We point out that the elliptic genus of the K3 surface has a natural decomposition in terms of dimensions of irreducible representations of the largest Mathieu group M-24. The reason remains a mystery.
引用
收藏
页码:91 / 96
页数:6
相关论文
共 25 条
  • [1] [Anonymous], 1998, U LECT SERIES
  • [2] [Anonymous], 1979, Bull. London Math. Soc., DOI DOI 10.1112/BLMS/11.3.352
  • [3] BRINGMANN K, 2008, COEFFICIENTS HARMONI
  • [4] The f(q) mock theta function conjecture and partition ranks
    Bringmann, Kathrin
    Ono, Ken
    [J]. INVENTIONES MATHEMATICAE, 2006, 165 (02) : 243 - 266
  • [5] CHENG MCN, 2010, ARXIV10055415HEPTH
  • [6] Conway J., 1979, Bull. Lond. Math. Soc, V11, P308, DOI DOI 10.1112/BLMS/11.3.308
  • [7] Conway J. H., 1985, ATLAS of Finite Groups
  • [8] AN ORBIFOLD THEORY OF GENUS ZERO ASSOCIATED TO THE SPORADIC GROUP-M24
    DONG, CY
    MASON, G
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 164 (01) : 87 - 104
  • [9] SUPERCONFORMAL ALGEBRAS AND STRING COMPACTIFICATION ON MANIFOLDS WITH SU(N) HOLONOMY
    EGUCHI, T
    OOGURI, H
    TAORMINA, A
    YANG, SK
    [J]. NUCLEAR PHYSICS B, 1989, 315 (01) : 193 - 221
  • [10] CHARACTER FORMULAS FOR THE N = 4 SUPERCONFORMAL ALGEBRA
    EGUCHI, T
    TAORMINA, A
    [J]. PHYSICS LETTERS B, 1988, 200 (03) : 315 - 322