SCHUR CONVEXITY PROPERTIES FOR THE ELLIPTIC NEUMAN MEAN WITH APPLICATIONS

被引:0
作者
Song, Ying-Qing [1 ]
Wang, Miao-Kun [2 ]
Chu, Yu-Ming [1 ]
机构
[1] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China
[2] Hunan Univ, Coll Math & Econometr, Changsha 410082, Peoples R China
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2015年 / 18卷 / 01期
关键词
elliptic Neuman mean; Jacobian elliptic function; Schur convex; Schur multiplicatively convex; Schur harmonic convex; HARMONIC CONVEXITIES; SYMMETRIC FUNCTION;
D O I
10.7153/mia-18-13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Strictly Schur convexity, Schur multiplicative convexity and Schur harmonic convexity are investigated for the elliptic Neuman mean. As applications, several sharp bounds for the arithmetic, geometric and harmonic means in terms of the elliptic Neuman mean are presented.
引用
收藏
页码:185 / 194
页数:10
相关论文
共 7 条
[1]  
Anderson G. D., 1997, CONFORMAL INVARINANT
[2]  
[Anonymous], 1977, Special Functions of Applied Mathematics
[3]   The Schur multiplicative and harmonic convexities of the complete symmetric function [J].
Chu, Y. -M. ;
Wang, G. -D. ;
Zhang, X. -H. .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) :653-663
[4]   The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications [J].
Chu, Yu-Ming ;
Xia, Wei-Feng ;
Zhang, Xiao-Hui .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 105 (01) :412-421
[5]  
Marshall AW, 2011, SPRINGER SER STAT, P3, DOI 10.1007/978-0-387-68276-1
[6]   On one-parameter family of bivariate means [J].
Neuman, Edward .
AEQUATIONES MATHEMATICAE, 2012, 83 (1-2) :191-197
[7]  
Olver F.W.J., 2010, NIST handbook of mathematical functions