Uniqueness of radially symmetric positive solutions for -Δu+u=up in an annulus

被引:29
作者
Felmer, Patricio [2 ,3 ]
Martinez, Salome [2 ,3 ]
Tanaka, Kazunaga [1 ]
机构
[1] Waseda Univ, Dept Math, Sch Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan
[2] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[3] Univ Chile, Ctr Modelamiento Matemat, UMR2071, CNRS, Santiago, Chile
基金
日本学术振兴会;
关键词
non-linear elliptic equation; radially symmetric solutions; non-degeneracy;
D O I
10.1016/j.jde.2008.06.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we prove that the semi-linear elliptic partial differential equation -Delta u + u = u(p) in Omega u > 0 in Omega. u = 0 on partial derivative Omega possesses a unique positive radially symmetric solution. Here p > 1 and Omega is the annulus (x epsilon R(N) vertical bar a < vertical bar x vertical bar < b), with N >= 2, 0 < a < b <= infinity. We also show the positive solution is non-degenerate. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1198 / 1209
页数:12
相关论文
共 20 条
[1]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[2]   A GEOMETRIC PROOF OF THE KWONG-MCLEOD UNIQUENESS RESULT [J].
CLEMONS, CB ;
JONES, CKRT .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (02) :436-443
[3]  
COFFMAN CV, 1972, ARCH RATION MECH AN, V46, P81
[4]   Uniqueness of the positive radial solution on annulus of the Dirichlet problem for Delta u-u+u(3)=0 [J].
Coffman, CV .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 128 (02) :379-386
[5]  
ERBE L, 1998, DIFFERENTIAL INTEGRA, V0011, P00725
[6]  
Erbe L., 1998, DIFFER INTEGRAL EQU, V11, P663
[7]   Thick clusters for the radially symmetric nonlinear Schrodinger equation [J].
Felmer, Patricio ;
Martinez, Salome .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 31 (02) :231-261
[9]   Uniqueness of positive radial solutions of semilinear elliptic equations in RN and Sere's non-degeneracy condition [J].
Kabeya, Y ;
Tanaka, K .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (3-4) :563-598
[10]  
KAWANO N, 1993, FUNKC EKVACIOJ-SER I, V36, P557