A matrix formulation of Gruss inequality

被引:10
|
作者
Renaud, PF [1 ]
机构
[1] Univ Canterbury, Dept Math & Stat, Christchurch 1, New Zealand
关键词
Gruss inequality; Trace inequality;
D O I
10.1016/S0024-3795(01)00278-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A matrix trace inequality, which can be regarded as a non-commutative version of Gruss inequality is derived. The proof easily generalises to the more general case of bounded linear operators on a Hilbert space. Other inequalities such as the Kantorovich inequality can be readily derived. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 50 条
  • [1] A GRUSS TYPE OPERATOR INEQUALITY
    Bottazzi, T.
    Conde, C.
    ANNALS OF FUNCTIONAL ANALYSIS, 2017, 8 (01): : 124 - 132
  • [2] REVISITING THE GRUSS INEQUALITY
    Moradi, H. R.
    Furuich, S.
    Heydarbeygi, Z.
    Sababheh, M.
    OPERATORS AND MATRICES, 2021, 15 (04): : 1379 - 1392
  • [3] STEFFENSEN-GRUSS INEQUALITY
    Butt, Saad, I
    Bakula, Milica Klaricic
    Pecaric, Josip
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 799 - 810
  • [4] A companion of the Gruss inequality and applications
    Dragomir, SS
    APPLIED MATHEMATICS LETTERS, 2004, 17 (04) : 429 - 435
  • [5] A REFINEMENT OF THE GRUSS INEQUALITY AND APPLICATIONS
    Cerone, P.
    Dragomir, S. S.
    TAMKANG JOURNAL OF MATHEMATICS, 2007, 38 (01): : 37 - 49
  • [6] ON THE PRE-JENSEN-GRUSS INEQUALITY
    Bakula, M. Klaricic
    Pecaric, J.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (04): : 1529 - 1543
  • [7] Gruss inequality for completely bounded maps
    Peric, I
    Rajic, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 390 : 287 - 292
  • [8] SOME BOUNDS FOR INTEGRALS WITH REFINEMENTS OF THE GRUSS INEQUALITY
    Sharma, R.
    Bhandari, R.
    Thakur, A.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2011, 42 (03) : 187 - 202
  • [9] ON GRUSS TYPE INEQUALITY FOR A HYPERGEOMETRIC FRACTIONAL INTEGRAL
    Kalla, Shyam L.
    Rao, Alka
    MATEMATICHE, 2011, 66 (01): : 57 - 64
  • [10] A NEW OSTROWSKI-GRUSS TYPE INEQUALITY
    Miao, Yu
    Han, Fei
    Mu, Jianyong
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2013, 37 (02): : 307 - 317