Finite termination of the proximal point algorithm in Banach spaces

被引:5
|
作者
Matsushita, Shin-ya [1 ]
Xu, Li [1 ]
机构
[1] Akita Prefectural Univ, Fac Syst Sci & Technol, Dept Elect & Informat Syst, Yurihonjo City, Akita 0150055, Japan
关键词
Weak sharp minima; Proximal point algorithm; Finite termination; Banach space; Metric projection; MONOTONE-OPERATORS; STRONG-CONVERGENCE; WEAK;
D O I
10.1016/j.jmaa.2011.09.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the convex optimization problem can be solved by the proximal point algorithm in a finite number of steps under the assumption that the solution set is a set of weak sharp minima. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:765 / 769
页数:5
相关论文
共 50 条
  • [1] ON CONVERGENCE OF THE PROXIMAL POINT ALGORITHM IN BANACH SPACES
    Matsushita, Shin-ya
    Xu, Li
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (11) : 4087 - 4095
  • [2] ON A HYBRID PROXIMAL POINT ALGORITHM IN BANACH SPACES
    Dadashi, Vahid
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (03): : 45 - 54
  • [3] A convergence rate of the proximal point algorithm in Banach spaces
    Matsushita, Shin-ya
    OPTIMIZATION, 2018, 67 (06) : 881 - 888
  • [4] FINITE TERMINATION OF THE PROXIMAL POINT ALGORITHM
    FERRIS, MC
    MATHEMATICAL PROGRAMMING, 1991, 50 (03) : 359 - 366
  • [5] AN INEXACT PROXIMAL POINT ALGORITHM FOR NONMONOTONE EQUILIBRIUM PROBLEMS IN BANACH SPACES
    Tang, Guo-ji
    Wang, Xing
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (06): : 2117 - 2133
  • [6] Finite Convergence of the Proximal Point Algorithm for Variational Inequality Problems
    Matsushita, Shin-ya
    Xu, Li
    SET-VALUED AND VARIATIONAL ANALYSIS, 2013, 21 (02) : 297 - 309
  • [7] Finite Termination of Inexact Proximal Point Algorithms in Hilbert Spaces
    Wang, J. H.
    Li, C.
    Yao, J. -C.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 166 (01) : 188 - 212
  • [8] On finite termination of an inexact Proximal Point algorithm?
    Patrascu, Andrei
    Irofti, Paul
    APPLIED MATHEMATICS LETTERS, 2022, 134
  • [9] STRONG CONVERGENCE OF AN INEXACT PROXIMAL POINT ALGORITHM FOR EQUILIBRIUM PROBLEMS IN BANACH SPACES
    Mashreghi, Javad
    Nasri, Mostafa
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (09) : 1053 - 1071
  • [10] A STRONGLY CONVERGENT MODIFICATION OF THE PROXIMAL POINT ALGORITHM IN NONSMOOTH BANACH SPACES
    Chebbi, Souhail
    Altwaijry, Najla
    Xu, Hong-Kun
    FIXED POINT THEORY, 2018, 19 (01): : 107 - 122