The first lithiation/delithiation mechanism of MFeOPO4 (M: Co, Ni) as revealed by 57Fe Mossbauer spectroscopy

被引:6
作者
Aziam, Hasna [1 ,2 ,3 ]
Indris, Sylvio [3 ]
Ben Youcef, Hicham [1 ]
Witte, Ralf [4 ]
Sarapulova, Angelina [3 ]
Ehrenberg, Helmut [3 ]
Saadoune, Ismael [2 ,5 ]
机构
[1] Mohammed VI Polytech Univ UM6P, High Throughput Multidisciplinary Res HTMR, Lot 660, Ben Guerir, Morocco
[2] Cadi Ayyad Univ UCA, Fac Sci & Technol, IMED, Av A El Khattabi,PB 549, Marrakech, Morocco
[3] Karlsruhe Inst Technol, Inst Appl Mat Energy Storage Syst IAM ESS, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[4] Karlsruhe Inst Technol, Inst Nanotechnol, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[5] Mohammed VI Polytech Univ, Technol Transfer Off, Technol Dev Cell Techcell, Lot 660, Ben Guerir 43150, Morocco
关键词
MFeOPO4@C oxyphosphate; Solid-sate reaction; Irreversible amorphization; Fe-57 Mossbauer spectroscopy; Oxidation; Reduction; Iron; IN-SITU; ANODE MATERIAL; ELECTROCHEMICAL LITHIATION/DELITHIATION; IRREVERSIBLE CAPACITY; ELECTRODE MATERIAL; LITHIUM; IRON; NANOPARTICLES; REDUCTION; OXIDES;
D O I
10.1016/j.jallcom.2022.164373
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Iron (III) transition metal MFeOPO4@C (M: Co, Ni) oxyphosphates were synthesized using a solid-state reaction. The electrochemical properties of MFeOPO4@C were evaluated versus Li+/Li using two different binders (PVDF and CMC) in the voltage range 0.01-3.0 V. These phosphates show similar electrochemical profiles for both binders. They deliver a high discharge capacity during the first cycle around 755 mA h g(-1) and 661 mA h g(-1) for CoFeOPO4@C and 735 mA h g(-1) and 789 mA h g(-1) for NiFeOPO4@C when using PVDF and CMC binders, respectively. In our previous work, the electrochemical mechanism of MFeOPO4@C was investigated using in situ synchrotron XRD and X-ray absorption spectroscopy (XAS) revealing an irreversible amorphization of the crystal structure and the formation of new products at the end of discharge (Fe-0, M-0, Li2O, and Li3PO4). Moreover, XAS measurements showed that both transition metals M and Fe are active during the discharge/charge process. Our previous hypotheses suggested the oxidation of metallic iron to only divalent iron Fe2+ during charge. However, Fe-57 Mossbauer spectroscopy study reported here in this paper demonstrated that Fe3+ is partially reduced to Fe2+ and Fe-0 in the first stages of lithiation, and then totally reduced to metallic iron by the end of discharge. Furthermore, when charging MFeOPO4@C against Li+/Li, Fe-57 Mossbauer spectroscopy technique surprisingly proved that iron is re-oxidized to + 2 and + 3. Therefore, the new data using Fe-57 Mossbauer spectroscopy has revealed insightful findings on the electronic changes of Fe upon the first lithiation/ delithiation. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Electrochemical Route to Alleviate Irreversible Capacity Loss from Conversion Type α-Fe2O3 Anodes by LiVPO4F Prelithiation [J].
Aravindan, Vanchiappan ;
Satish, Rohit ;
Jayaraman, Sundaramurthy ;
Madhavi, Srinivasan .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (10) :5198-5202
[2]   Pre-lithiated LixMn2O4: A new approach to mitigate the irreversible capacity loss in negative electrodes for Li-ion battery [J].
Aravindan, Vanchiappan ;
Nan, Shen ;
Keppeler, Miriam ;
Madhavi, Srinivasan .
ELECTROCHIMICA ACTA, 2016, 208 :225-230
[3]   Understanding the electrochemical lithiation/delithiation process in the anode material for lithium ion batteries NiFeOPO4/C using ex-situ X-ray absorption near edge spectroscopy and in-situ synchrotron X-ray [J].
Aziam, H. ;
Garhi, G. ;
Tamraoui, Y. ;
Ma, L. ;
Wu, T. ;
Xu, G. L. ;
Manoun, B. ;
Alami, J. ;
Amine, K. ;
Saadoune, I. .
ELECTROCHIMICA ACTA, 2018, 283 :1238-1244
[4]   Mechanism of the First Lithiation/Delithiation Process in the Anode Material CoFeOPO4@C for Li-Ion Batteries [J].
Aziam, H. ;
Tamraoui, Y. ;
Ma, L. ;
Amine, R. ;
Wu, T. ;
Manoun, B. ;
Xu, G. L. ;
Amine, K. ;
Alami, J. ;
Saadoune, I .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (13) :7139-7148
[5]   Synthesis, Characterization, Electrochemistry, and In Situ X-ray Diffraction Investigation of Ni3(PO4)2as a Negative Electrode Material for Lithium-Ion Batteries [J].
Aziam, Hasna ;
Indris, Sylvio ;
Knapp, Michael ;
Ehrenberg, Helmut ;
Saadoune, Ismael .
CHEMELECTROCHEM, 2020, 7 (18) :3866-3873
[6]   Understanding the lithiation/delithiation process in SnP2O7 anode material for lithium-ion batteries [J].
Bezza, Ilham ;
Trouillet, Vanessa ;
Fiedler, Andy ;
Bruns, Michael ;
Indris, Sylvio ;
Ehrenberg, Helmut ;
Saadoune, Ismael .
ELECTROCHIMICA ACTA, 2017, 252 :446-452
[7]   Electrochemical lithiation/delithiation of SnP2O7 observed by in situ XRD and ex situ 7Li/31P NMR, and 119Sn Mossbauer spectroscopy [J].
Bezza, Ilham ;
Kaus, Maximilian ;
Riekehr, Lars ;
Pfaffmann, Lukas ;
Doyle, Stephen ;
Indris, Sylvio ;
Ehrenberg, Helmut ;
Solhy, Abderrahim ;
Saadoune, Ismael .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (15) :10375-10382
[8]   Mechanism of the Delithiation/Lithiation Process in LiFe0.4Mn0.6PO4: in Situ and ex Situ Investigations on Long-Range and Local Structures [J].
Bezza, Ilharn ;
Kaus, Maximilian ;
Heinzmann, Ralf ;
Yavuz, Murat ;
Knapp, Michael ;
Mangold, Stefan ;
Doyle, Stephen ;
Grey, Clare P. ;
Ehrenberg, Helmut ;
Indris, Sylvio ;
Saadoune, Ismael .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (17) :9016-9024
[9]  
Bland J., 2002, SPECTROSCOPY MAGNETO
[10]   Na2FePO4F/multi-walled carbon nanotubes for lithium-ion batteries: Operando Mossbauer study of spray-dried composites [J].
Brisbois, Magali ;
Caes, Sebastien ;
Sougrati, Moulay T. ;
Vertruyen, Benedicte ;
Schrijnemakers, Audrey ;
Cloots, Rudi ;
Eshraghi, Nicolas ;
Hermann, Raphael P. ;
Mahmoud, Abdelfattah ;
Boschini, Frederic .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 148 :67-72