Electrically Control Lateral Shift Owning to Guided-Wave Surface Plasmon Resonance with a Lithium Niobate Prism

被引:2
|
作者
Kang, Yongqiang [1 ]
Gao, Peng [2 ]
Zhang, Jing [3 ,4 ]
Ren, Wenyi [5 ]
机构
[1] Shanxi Datong Univ, Inst Solid State Phys, Datong 037009, Shanxi, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Math & Phys Sci, Qingdao 266061, Peoples R China
[3] Guangxi Teachers Educ Univ, Key Lab Environm Change & Resources Use Beibu Gul, Minist Educ, Nanning 530023, Peoples R China
[4] Guangxi Teachers Educ Univ, Guangxi Key Lab Earth Surface Proc & Intelligent, Nanning 530023, Peoples R China
[5] Northwest A&F Univ, Sch Sci, Yangling 712100, Shaanxi, Peoples R China
基金
美国国家科学基金会;
关键词
Lateral shift; Surface plasmon resonance; Electric control; GOOS-HANCHEN SHIFT; BEAM; REFLECTION; ENHANCEMENT; GRAPHENE;
D O I
10.1007/s11468-020-01212-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrically controlled lateral shift by an electro-optic crystal prism is studied theoretically. The resonance point of excitation of guided-wave surface plasmon resonance (GWSPR) can be controlled by altering the refractive index of the prism. That is to say, the positions corresponding to the least reflectivity and the largest lateral shift could be conveniently modulated while the lithium niobate prism is operated in an external electric field. The maximal lateral shift is obtained at the excitation of GWSPR when the thickness of the silver film is optimized. The results of numerical simulations confirm theoretical calculation.
引用
收藏
页码:1883 / 1890
页数:8
相关论文
共 50 条
  • [21] LITHIUM-NIOBATE GUIDED-WAVE BEAM FORMER FOR STEERING PHASED-ARRAY ANTENNAS
    ARMENISE, MN
    PASSARO, VMN
    NOVIELLO, G
    APPLIED OPTICS, 1994, 33 (26): : 6194 - 6209
  • [22] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
    Li, Tianqi
    Chen, Shujing
    Lin, Chengyou
    CHINESE PHYSICS B, 2022, 31 (12)
  • [23] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
    李天琦
    陈淑静
    林承友
    Chinese Physics B, 2022, 31 (12) : 273 - 278
  • [24] Growth of Low-Temperature Epitaxial Lithium Niobate Thin Films and Guided-Wave Optical Properties
    Bui, Thanh Ngoc Kim
    Wagner, Estelle
    Moalla, Rahma
    Maudez, William
    Dogheche, Karim
    Bachelet, Romain
    Masenelli, Bruno
    Benvenuti, Giacomo
    Remiens, Denis
    Dogheche, El Hadj
    PHOTONICS, 2024, 11 (10)
  • [25] Sensitivity comparison of graphene-based nearly guided-wave surface plasmon resonance biosensors with Au, Ag, Cu, and Al
    Lin, Chengyou
    Chen, Shujing
    JOURNAL OF NANOPHOTONICS, 2019, 13 (01)
  • [26] POLARIZATION-INDEPENDENT 1 multiplied by 16 GUIDED-WAVE OPTICAL SWITCH INTEGRATED ON LITHIUM NIOBATE.
    Watson, J.E.
    Milbrodt, M.A.
    Rice, T.C.
    Journal of Lightwave Technology, 1986, LT-4 (11) : 1717 - 1721
  • [27] Electrical control of giant lateral shift based on surface plasmon resonance excited by left-handed material
    Tang, Tingting
    OPTIK, 2013, 124 (20): : 4632 - 4634
  • [28] A POLARIZATION-INDEPENDENT 1X16 GUIDED-WAVE OPTICAL SWITCH INTEGRATED ON LITHIUM-NIOBATE
    WATSON, JE
    MILBRODT, MA
    RICE, TC
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 1986, 4 (11) : 1717 - 1721
  • [29] Net lateral shift of reflected beam due to surface plasmon resonance in Kretschmann configuration
    Liu, Xiangmin
    Yang, Qingfen
    Zhu, Pengfei
    Zhang, Yanli
    Shi, Yan
    OPTIK, 2013, 124 (19): : 4026 - 4029
  • [30] Design and fabrication of a wave guide on a prism for the stabilization of signal of surface plasmon resonance based sensor
    Toyama, S
    Ikariyama, Y
    TECHNICAL DIGEST OF THE SEVENTH INTERNATIONAL MEETING ON CHEMICAL SENSORS, 1998, : 453 - 455