Electrically Control Lateral Shift Owning to Guided-Wave Surface Plasmon Resonance with a Lithium Niobate Prism

被引:2
作者
Kang, Yongqiang [1 ]
Gao, Peng [2 ]
Zhang, Jing [3 ,4 ]
Ren, Wenyi [5 ]
机构
[1] Shanxi Datong Univ, Inst Solid State Phys, Datong 037009, Shanxi, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Math & Phys Sci, Qingdao 266061, Peoples R China
[3] Guangxi Teachers Educ Univ, Key Lab Environm Change & Resources Use Beibu Gul, Minist Educ, Nanning 530023, Peoples R China
[4] Guangxi Teachers Educ Univ, Guangxi Key Lab Earth Surface Proc & Intelligent, Nanning 530023, Peoples R China
[5] Northwest A&F Univ, Sch Sci, Yangling 712100, Shaanxi, Peoples R China
基金
美国国家科学基金会;
关键词
Lateral shift; Surface plasmon resonance; Electric control; GOOS-HANCHEN SHIFT; BEAM; REFLECTION; ENHANCEMENT; GRAPHENE;
D O I
10.1007/s11468-020-01212-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrically controlled lateral shift by an electro-optic crystal prism is studied theoretically. The resonance point of excitation of guided-wave surface plasmon resonance (GWSPR) can be controlled by altering the refractive index of the prism. That is to say, the positions corresponding to the least reflectivity and the largest lateral shift could be conveniently modulated while the lithium niobate prism is operated in an external electric field. The maximal lateral shift is obtained at the excitation of GWSPR when the thickness of the silver film is optimized. The results of numerical simulations confirm theoretical calculation.
引用
收藏
页码:1883 / 1890
页数:8
相关论文
共 32 条
  • [11] Reflection coefficients and Goos-Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials
    Grzegorczyk, T. M.
    Chen, X.
    Pacheco, J., Jr.
    Chen, J.
    Wu, B. -I.
    Kong, J. A.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2005, 51 : 83 - 113
  • [12] Phase effects in a semiconductor laser with diffraction extraction of radiation
    Kaliteevskii, MA
    Portnoi, EL
    Sokolovskii, GS
    [J]. TECHNICAL PHYSICS LETTERS, 1997, 23 (09) : 699 - 700
  • [13] Large tunable negative lateral shift from graphene-based hyperbolic metamaterials backed by a dielectric
    Kang, Yong-qiang
    Ren, Wenyi
    Cao, Qizhi
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2018, 120 : 1 - 6
  • [14] Tunable enhanced Goos-Hanchen shift of light beam reflected from graphene-based hyperbolic metamaterials
    Kang, Yong-qiang
    Xiang, Yuanjiang
    Luo, Changyou
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2018, 124 (06):
  • [15] Large Tunable Lateral Shift from Guided Wave Surface Plasmon Resonance
    Kang, Yongqiang
    Gao, Peng
    Liu, Hongmei
    Zhang, Jing
    [J]. PLASMONICS, 2019, 14 (05) : 1289 - 1293
  • [16] Sensitivity enhancement of guided-wave surface-plasmon resonance sensors
    Lahav, Amit
    Auslender, Mark
    Abdulhalim, I.
    [J]. OPTICS LETTERS, 2008, 33 (21) : 2539 - 2541
  • [17] Large negative Goos-Hanchen shift at metal surfaces
    Leung, P. T.
    Chen, C. W.
    Chiang, H.-P.
    [J]. OPTICS COMMUNICATIONS, 2007, 276 (02) : 206 - 208
  • [18] Physical origin of large positive and negative lateral optical beam shifts in prism-waveguide coupling system
    Liu, Xiangmin
    Yang, Qingfen
    Qiao, Zhi
    Li, Tongkai
    Zhu, Pengfei
    Cao, Zhuangqi
    [J]. OPTICS COMMUNICATIONS, 2010, 283 (13) : 2681 - 2685
  • [19] Electrically controlled Goos-Hanchen shift of a light beam reflected from the metal-insulator-semiconductor structure
    Luo, Changyou
    Guo, Jun
    Wang, Qingkai
    Xiang, Yuanjiang
    Wen, Shuangchun
    [J]. OPTICS EXPRESS, 2013, 21 (09): : 10430 - 10439
  • [20] Observation of Goos-Hanchen shifts in metallic reflection
    Merano, M.
    Aiello, A.
    't Hooft, G. W.
    van Exter, M. P.
    Eliel, E. R.
    Woerdman, J. P.
    [J]. OPTICS EXPRESS, 2007, 15 (24): : 15928 - 15934