Electrically Control Lateral Shift Owning to Guided-Wave Surface Plasmon Resonance with a Lithium Niobate Prism

被引:2
作者
Kang, Yongqiang [1 ]
Gao, Peng [2 ]
Zhang, Jing [3 ,4 ]
Ren, Wenyi [5 ]
机构
[1] Shanxi Datong Univ, Inst Solid State Phys, Datong 037009, Shanxi, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Math & Phys Sci, Qingdao 266061, Peoples R China
[3] Guangxi Teachers Educ Univ, Key Lab Environm Change & Resources Use Beibu Gul, Minist Educ, Nanning 530023, Peoples R China
[4] Guangxi Teachers Educ Univ, Guangxi Key Lab Earth Surface Proc & Intelligent, Nanning 530023, Peoples R China
[5] Northwest A&F Univ, Sch Sci, Yangling 712100, Shaanxi, Peoples R China
基金
美国国家科学基金会;
关键词
Lateral shift; Surface plasmon resonance; Electric control; GOOS-HANCHEN SHIFT; BEAM; REFLECTION; ENHANCEMENT; GRAPHENE;
D O I
10.1007/s11468-020-01212-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrically controlled lateral shift by an electro-optic crystal prism is studied theoretically. The resonance point of excitation of guided-wave surface plasmon resonance (GWSPR) can be controlled by altering the refractive index of the prism. That is to say, the positions corresponding to the least reflectivity and the largest lateral shift could be conveniently modulated while the lithium niobate prism is operated in an external electric field. The maximal lateral shift is obtained at the excitation of GWSPR when the thickness of the silver film is optimized. The results of numerical simulations confirm theoretical calculation.
引用
收藏
页码:1883 / 1890
页数:8
相关论文
共 32 条
  • [1] Goos-Hanchen and Imbert-Fedorov shifts: a novel perspective
    Aiello, Andrea
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [2] Artmann K. V., 1948, ANN PHYS, V437, P87, DOI DOI 10.1002/ANDP.19484370108
  • [3] Goos-Hanchen and Imbert-Fedorov beam shifts: an overview
    Bliokh, K. Y.
    Aiello, A.
    [J]. JOURNAL OF OPTICS, 2013, 15 (01)
  • [4] Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides
    Chen, Lin
    Cao, Zhuangqi
    Ou, Fang
    Li, Honggen
    Shen, Qishun
    Qiao, Huicong
    [J]. OPTICS LETTERS, 2007, 32 (11) : 1432 - 1434
  • [5] Mechanism of giant Goos-Hanchen effect enhanced by long-range surface plasmon excitation
    Chen, Lin
    Liu, Xuanbin
    Cao, Zhuangqi
    Zhuang, Songlin
    [J]. JOURNAL OF OPTICS, 2011, 13 (03)
  • [6] Sensitivity enhancement of a surface plasmon resonance sensor using porous metamaterial layers
    Cherifi, Abdellatif
    Bouhafs, Benamar
    [J]. MATERIALS RESEARCH EXPRESS, 2017, 4 (12):
  • [7] Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hanchen effect
    Farmani, Ali
    Mir, Ali
    Sharifpour, Zhaleh
    [J]. APPLIED SURFACE SCIENCE, 2018, 453 : 358 - 364
  • [8] Analytical modeling of highly tunable giant lateral shift in total reflection of light beams from a graphene containing structure
    Farmani, Ali
    Miri, Mehdi
    Sheikhi, Mohammad H.
    [J]. OPTICS COMMUNICATIONS, 2017, 391 : 68 - 76
  • [9] Large and negative Goos-Hanchen shift with magneto-controllability based on a ferrofluid
    Fu, Mengshi
    Zhang, Yu
    Wu, Jipeng
    Dai, Xiaoyu
    Xiang, Yuanjiang
    [J]. JOURNAL OF OPTICS, 2013, 15 (03)
  • [10] Goos F., 1947, ANN PHYS, V436, P333, DOI DOI 10.1002/ANDP.19474360704