Electrically Control Lateral Shift Owning to Guided-Wave Surface Plasmon Resonance with a Lithium Niobate Prism

被引:2
|
作者
Kang, Yongqiang [1 ]
Gao, Peng [2 ]
Zhang, Jing [3 ,4 ]
Ren, Wenyi [5 ]
机构
[1] Shanxi Datong Univ, Inst Solid State Phys, Datong 037009, Shanxi, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Math & Phys Sci, Qingdao 266061, Peoples R China
[3] Guangxi Teachers Educ Univ, Key Lab Environm Change & Resources Use Beibu Gul, Minist Educ, Nanning 530023, Peoples R China
[4] Guangxi Teachers Educ Univ, Guangxi Key Lab Earth Surface Proc & Intelligent, Nanning 530023, Peoples R China
[5] Northwest A&F Univ, Sch Sci, Yangling 712100, Shaanxi, Peoples R China
基金
美国国家科学基金会;
关键词
Lateral shift; Surface plasmon resonance; Electric control; GOOS-HANCHEN SHIFT; BEAM; REFLECTION; ENHANCEMENT; GRAPHENE;
D O I
10.1007/s11468-020-01212-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrically controlled lateral shift by an electro-optic crystal prism is studied theoretically. The resonance point of excitation of guided-wave surface plasmon resonance (GWSPR) can be controlled by altering the refractive index of the prism. That is to say, the positions corresponding to the least reflectivity and the largest lateral shift could be conveniently modulated while the lithium niobate prism is operated in an external electric field. The maximal lateral shift is obtained at the excitation of GWSPR when the thickness of the silver film is optimized. The results of numerical simulations confirm theoretical calculation.
引用
收藏
页码:1883 / 1890
页数:8
相关论文
共 50 条
  • [1] Electrically Control Lateral Shift Owning to Guided-Wave Surface Plasmon Resonance with a Lithium Niobate Prism
    Yongqiang Kang
    Peng Gao
    Jing Zhang
    Wenyi Ren
    Plasmonics, 2020, 15 : 1883 - 1890
  • [2] Large Tunable Lateral Shift from Guided Wave Surface Plasmon Resonance
    Yongqiang Kang
    Peng Gao
    Hongmei Liu
    Jing Zhang
    Plasmonics, 2019, 14 : 1289 - 1293
  • [3] Large Tunable Lateral Shift from Guided Wave Surface Plasmon Resonance
    Kang, Yongqiang
    Gao, Peng
    Liu, Hongmei
    Zhang, Jing
    PLASMONICS, 2019, 14 (05) : 1289 - 1293
  • [4] Coherent control of Goos-Hänchen shift in a guided-wave surface plasmon resonance structure with Rydberg atoms
    Cai, Dingyu
    Luo, Mengmeng
    Chen, Yuetao
    Gao, Shaoyan
    RESULTS IN OPTICS, 2021, 3
  • [5] Sensitivity enhancement of guided-wave surface-plasmon resonance sensors
    Lahav, Amit
    Auslender, Mark
    Abdulhalim, I.
    OPTICS LETTERS, 2008, 33 (21) : 2539 - 2541
  • [6] Lithium niobate - Electrooptic guided-wave optical switch
    Okayama, H
    ACTIVE AND PASSIVE OPTICAL COMPONENTS FOR WDM COMMUNICATION, 2001, 4532 : 73 - 85
  • [7] Enhancement in sensitivity of guided-wave surface plasmon resonance sensor using graphene
    Yue, Chong
    Lang, Yaopu
    Zhou, Xinlin
    Liu, Qinggang
    2019 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: MICRO/NANO PHOTONICS: MATERIALS AND DEVICES, 2020, 11440
  • [8] Guided-wave frequency doubling in surface periodically poled lithium niobate: competing effects
    Stivala, S.
    Pasquazi, A.
    Colace, L.
    Assanto, G.
    Busacca, A. C.
    Cherchi, M.
    Riva-Sanseverino, S.
    Cino, A. C.
    Parisi, A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2007, 24 (07) : 1564 - 1570
  • [9] LITHIUM-NIOBATE GUIDED-WAVE NETWORK FOR A COHERENT RECEIVER
    HEIDRICH, H
    HOFFMANN, D
    VONHELMOLT, CH
    AHLERS, H
    OPTICS LETTERS, 1989, 14 (01) : 99 - 101
  • [10] Black phosphorus (BP)-graphene guided-wave surface plasmon resonance (GWSPR) biosensor
    Su, Mingyang
    Chen, Xueyu
    Tang, Linwei
    Yang, Bo
    Zou, Haijian
    Liu, Junmin
    Li, Ying
    Chen, Shuqing
    Fan, Dianyuan
    NANOPHOTONICS, 2020, 9 (14) : 4265 - 4272