Incomplete noise-induced synchronization of spatially extended systems

被引:20
作者
Hramov, Alexander E. [1 ]
Koronovskii, Alexey A. [1 ]
Popov, Pavel V. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Fac Nonlinear Proc, Saratov 410012, Russia
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 03期
关键词
D O I
10.1103/PhysRevE.77.036215
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A type of noise-induced synchronous behavior is described. This phenomenon, called incomplete noise-induced synchronization, arises for one-dimensional Ginzburg-Landau equations driven by common noise. The mechanisms resulting in incomplete noise-induced synchronization in spatially extended systems are revealed analytically. Different types of model noise are considered. A very good agreement between the theoretical results and the numerically calculated data is shown.
引用
收藏
页数:7
相关论文
共 25 条
[1]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[2]   Forcing oscillatory media:: phase kinks vs. synchronization [J].
Chaté, H ;
Pikovsky, A ;
Rudzick, O .
PHYSICA D, 1999, 131 (1-4) :17-30
[3]   STRONG RESONANCES OF SPATIALLY DISTRIBUTED OSCILLATORS - A LABORATORY TO STUDY PATTERNS AND DEFECTS [J].
COULLET, P ;
EMILSSON, K .
PHYSICA D, 1992, 61 (1-4) :119-131
[4]   TRANSITION FROM CHAOTIC TO NONCHAOTIC BEHAVIOR IN RANDOMLY DRIVEN SYSTEMS [J].
FAHY, S ;
HAMANN, DR .
PHYSICAL REVIEW LETTERS, 1992, 69 (05) :761-764
[5]   EFFECTS OF EXTERNAL NOISE ON THE SWIFT-HOHENBERG EQUATION [J].
GARCIAOJALVO, J ;
HERNANDEZMACHADO, A ;
SANCHO, JM .
PHYSICAL REVIEW LETTERS, 1993, 71 (10) :1542-1545
[6]  
GARCIAOJALVO J, 1999, NOISE SPATIALLY EXTE
[7]   TRAVELLING WAVES WITH SPATIALLY RESONANT FORCING: BIFURCATIONS OF A MODIFIED LANDAU EQUATION [J].
Glendinning, Paul ;
Proctor, Michael .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (06) :1447-1455
[8]   Synchronization and desynchronization of self-sustained oscillators by common noise [J].
Goldobin, DS ;
Pikovsky, A .
PHYSICAL REVIEW E, 2005, 71 (04)
[9]  
HARMOV AE, 2005, PHYS REV E, V72, P7201
[10]   CHAOS, NOISE, AND SYNCHRONIZATION RECONSIDERED [J].
HERZEL, H ;
FREUND, J .
PHYSICAL REVIEW E, 1995, 52 (03) :3238-3241